Spaces:
Running
on
Zero
Running
on
Zero
File size: 53,264 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
# Main training loop of Portrait4D, modified from EG3D: https://github.com/NVlabs/eg3d
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Main training loop."""
import os
import time
import copy
import json
import pickle
import psutil
import PIL.Image
import numpy as np
import random
import torch
import torch.nn as nn
import dnnlib
from torch_utils import misc
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import grid_sample_gradfix
from omegaconf import OmegaConf
from rendering import RenderingClass
from einops import rearrange
import legacy
from recon.models.lpips.lpips import LPIPS
from recon.models.id.id_loss import IDLoss
from recon.training.generator.triplane_v20_original import TriPlaneGenerator
from headGallery_model.models.triplane_vae import AutoencoderKL as AutoencoderKLTriplane
# from training.triplane import PartTriPlaneGeneratorDeform
# ----------------------------------------------------------------------------
# def setup_snapshot_image_grid(all_shape_params, all_exp_params, all_pose_params, all_eye_pose_params, all_c,
# static_dataset=False, random_seed=1):
# gw = 7
# gh = 4
#
# grid_indices = np.random.RandomState(random_seed).randint(0, len(all_shape_params), size=(gw * gh))
#
# shape_params = all_shape_params[grid_indices]
# shape_params = np.tile(np.expand_dims(shape_params, 1), (1, 3, 1)).reshape(gw * gh, 3, -1)
#
# grid_indices2 = np.random.RandomState(random_seed + 1).randint(0, len(all_exp_params), size=(gw * gh))
# mot_indices = np.random.RandomState(random_seed + 2).randint(0, len(all_exp_params[0]), size=(gw * gh, 2))
#
# exp_params = all_exp_params[grid_indices2]
# exp_params = np.stack([exp_params[i, mot_indices[i]] for i in range(len(mot_indices))]) # (gw * gh, 2, dim)
#
# pose_params = all_pose_params[grid_indices2]
# pose_params = np.stack([pose_params[i, mot_indices[i]] for i in range(len(mot_indices))]) # (gw * gh, 2, dim)
#
# eye_pose_params = all_eye_pose_params[grid_indices2]
# eye_pose_params = np.stack(
# [eye_pose_params[i, mot_indices[i]] for i in range(len(mot_indices))]) # (gw * gh, 2, dim)
#
# if not static_dataset:
# # for dynamic
# exp_params = np.concatenate([exp_params, exp_params[:, -1:]], axis=1).reshape(gw * gh, 3,
# -1) # (gw * gh, 3, dim)
# pose_params = np.concatenate([pose_params, pose_params[:, -1:]], axis=1).reshape(gw * gh, 3, -1)
# eye_pose_params = np.concatenate([eye_pose_params, eye_pose_params[:, -1:]], axis=1).reshape(gw * gh, 3, -1)
# else:
# # for static
# exp_params = np.concatenate([exp_params[:, :1], exp_params[:, :1], exp_params[:, :1]], axis=1).reshape(gw * gh,
# 3,
# -1) # (gw * gh, 3, dim)
# pose_params = np.concatenate([pose_params[:, :1], pose_params[:, :1], pose_params[:, :1]], axis=1).reshape(
# gw * gh, 3, -1)
# eye_pose_params = np.concatenate([eye_pose_params[:, :1], eye_pose_params[:, :1], eye_pose_params[:, :1]],
# axis=1).reshape(gw * gh, 3, -1)
#
# grid_indices3 = np.random.randint(0, len(all_c), size=(gw * gh * 3))
# c = all_c[grid_indices3].reshape(gw * gh, 3, -1)
#
# return (gw, gh), shape_params, exp_params, pose_params, eye_pose_params, c
# def setup_snapshot_image_grid(all_shape_params, all_exp_params, all_pose_params, all_eye_pose_params, all_c,
# static_dataset=False, random_seed=1):
# gw = 7
# gh = 4
#
# grid_indices = np.random.RandomState(random_seed).randint(0, len(all_shape_params), size=(gw * gh))
#
# shape_params = all_shape_params[grid_indices]
# shape_params = np.tile(np.expand_dims(shape_params, 1), (1, 3, 1)).reshape(gw * gh, 3, -1)
#
# grid_indices2 = np.random.RandomState(random_seed + 1).randint(0, len(all_exp_params), size=(gw * gh))
# mot_indices = np.random.RandomState(random_seed + 2).randint(0, len(all_exp_params[0]), size=(gw * gh, 2))
#
# exp_params = all_exp_params[grid_indices2]
# exp_params = np.stack([exp_params[i, mot_indices[i]] for i in range(len(mot_indices))]) # (gw * gh, 2, dim)
#
# pose_params = all_pose_params[grid_indices2]
# pose_params = np.stack([pose_params[i, mot_indices[i]] for i in range(len(mot_indices))]) # (gw * gh, 2, dim)
#
# eye_pose_params = all_eye_pose_params[grid_indices2]
# eye_pose_params = np.stack(
# [eye_pose_params[i, mot_indices[i]] for i in range(len(mot_indices))]) # (gw * gh, 2, dim)
#
# if not static_dataset:
# # for dynamic
# exp_params = np.concatenate([exp_params, exp_params[:, -1:]], axis=1).reshape(gw * gh, 3,
# -1) # (gw * gh, 3, dim)
# pose_params = np.concatenate([pose_params, pose_params[:, -1:]], axis=1).reshape(gw * gh, 3, -1)
# eye_pose_params = np.concatenate([eye_pose_params, eye_pose_params[:, -1:]], axis=1).reshape(gw * gh, 3, -1)
# else:
# # for static
# exp_params = np.concatenate([exp_params[:, :1], exp_params[:, :1], exp_params[:, :1]], axis=1).reshape(gw * gh,
# 3,
# -1) # (gw * gh, 3, dim)
# pose_params = np.concatenate([pose_params[:, :1], pose_params[:, :1], pose_params[:, :1]], axis=1).reshape(
# gw * gh, 3, -1)
# eye_pose_params = np.concatenate([eye_pose_params[:, :1], eye_pose_params[:, :1], eye_pose_params[:, :1]],
# axis=1).reshape(gw * gh, 3, -1)
#
# grid_indices3 = np.random.randint(0, len(all_c), size=(gw * gh * 3))
# c = all_c[grid_indices3].reshape(gw * gh, 3, -1)
#
# return (gw, gh), shape_params, exp_params, pose_params, eye_pose_params, c
@torch.no_grad()
def setup_snapshot_image_grid_gallery(val_set, vae_triplane, vae_std, vae_mean, render, device):
gw = 2
gh = 2
phase_real_z_val, phase_real_latent_val, phase_real_c_1_d_val, phase_real_c_2_d_val, phase_real_c_3_d_val, phase_real_v_1_d_val, phase_real_v_2_d_val, phase_real_v_s_val, motion_1_val, motion_2_val, motion_ffhq_val, model_list_val = next(
val_set)
phase_real_z_val, phase_real_latent_val, phase_real_c_1_d_val, phase_real_c_2_d_val, phase_real_c_3_d_val, phase_real_v_1_d_val, phase_real_v_2_d_val, phase_real_v_s_val, motion_1_val, motion_2_val, motion_ffhq_val, model_list_val = \
phase_real_z_val.to(device), phase_real_latent_val.to(device), phase_real_c_1_d_val.to(device), phase_real_c_2_d_val.to(device), phase_real_c_3_d_val.to(device), phase_real_v_1_d_val.to(device), phase_real_v_2_d_val.to(device), \
phase_real_v_s_val.to(device), motion_1_val.to(device), motion_2_val.to(device), motion_ffhq_val.to(device), model_list_val
batchsize = phase_real_z_val.shape[0]
cur_z = phase_real_z_val.unsqueeze(1).repeat(1, 3, 1) # [b,1,512]
# cur_latent = phase_real_latent.unsqueeze(1).repeat(1, 1, 1, 1, 1) # [b,3,c, h, w]
c_1 = phase_real_c_1_d_val.unsqueeze(1) # input
c_2 = phase_real_c_2_d_val.unsqueeze(1) # motion
c_3 = phase_real_c_3_d_val.unsqueeze(1) # target
cur_c = torch.cat([c_1, c_2, c_3], 1) # from ffhq
exp_d_1 = phase_real_v_1_d_val.unsqueeze(1) # motion_1 from vfhq
exp_d_2 = phase_real_v_2_d_val.unsqueeze(1) # motion_2 from vfhq
exp_s = phase_real_v_s_val.unsqueeze(1).repeat(1, 3, 1, 1, 1) # motion_3 from ffhq for static similar to Portrait4D
cur_exp_params = torch.cat([exp_d_1, exp_d_2, exp_d_2], dim=1)
cur_exp_out = torch.cat([cur_exp_params[:batchsize // 2], exp_s[batchsize // 2:]], dim=0)
model_list_out = [val for val in model_list_val for i in range(3)]
model_list_out = listfunc(model_list_out, 3)
assert phase_real_latent_val.shape[0] == batchsize
cano_tri = vae_triplane.decode(phase_real_latent_val.to(torch.float16))
cano_tri = cano_tri.float()
cano_tri = rearrange(cano_tri, "b c f h w -> b f c h w")
ref_tri = cano_tri * vae_std + vae_mean
exp_target = cur_exp_out[:, 2]
# ref_tri_out = render.gen_triplane(ref_tri, exp_target)
motion_1_out = torch.cat([motion_1_val[:batchsize // 2], motion_ffhq_val[batchsize // 2:]], dim=0)
motion_2_out = torch.cat([motion_2_val[:batchsize // 2], motion_ffhq_val[batchsize // 2:]], dim=0)
# ref_img = render.get_img_with_tri(ref_tri, c_3)
# always half static
return (gw, gh), cur_z, cur_c, cur_exp_out, motion_1_out, motion_2_out, model_list_out, ref_tri
# ----------------------------------------------------------------------------
def save_image_grid_all(img_app, img_mot, img_recon, img_ref, fname, drange, grid_size):
lo, hi = drange
img_app = np.asarray(img_app, dtype=np.float32)
img_app = (img_app - lo) * (255 / (hi - lo))
img_app = np.rint(img_app).clip(0, 255).astype(np.uint8)
img_mot = np.asarray(img_mot, dtype=np.float32)
img_mot = (img_mot - lo) * (255 / (hi - lo))
img_mot = np.rint(img_mot).clip(0, 255).astype(np.uint8)
img_recon = np.asarray(img_recon, dtype=np.float32)
img_recon = (img_recon - lo) * (255 / (hi - lo))
img_recon = np.rint(img_recon).clip(0, 255).astype(np.uint8)
img_ref = np.asarray(img_ref, dtype=np.float32)
img_ref = (img_ref - lo) * (255 / (hi - lo))
img_ref = np.rint(img_ref).clip(0, 255).astype(np.uint8)
gw, gh = grid_size
_N, C, H, W = img_app.shape
img = np.concatenate([img_app, img_mot, img_recon, img_ref], -1)
gw, gh = grid_size
_N, C, H, W = img.shape
img = img.reshape([gh, gw, C, H, W])
img = img.transpose(0, 3, 1, 4, 2)
img = img.reshape([gh * H, gw * W, C])
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
if C == 3:
PIL.Image.fromarray(img, 'RGB').save(fname)
def save_image_grid(img, fname, drange, grid_size):
lo, hi = drange
img = np.asarray(img, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = np.rint(img).clip(0, 255).astype(np.uint8)
gw, gh = grid_size
_N, C, H, W = img.shape
img = img.reshape([gh, gw, C, H, W])
img = img.transpose(0, 3, 1, 4, 2)
img = img.reshape([gh * H, gw * W, C])
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
if C == 3:
PIL.Image.fromarray(img, 'RGB').save(fname)
def set_requires_grad(nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def split_gen(gen, batch_gpu, batch_size, device):
assert type(gen) == list
if type(gen[0]) == np.ndarray:
all_gen = torch.from_numpy(np.stack(gen)).pin_memory().to(device).float()
all_gen = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen.split(batch_size)]
elif type(gen[0]) == dict:
all_gen = [[{} for _ in range(batch_size // batch_gpu)] for _ in range(len(gen) // batch_size)]
for key in gen[0].keys():
key_value = torch.from_numpy(np.stack([sub[key] for sub in gen])).pin_memory().to(device).float()
key_value_split = [phase_gen_c.split(batch_gpu) for phase_gen_c in key_value.split(batch_size)]
for i in range(len(key_value_split)):
for j in range(len(key_value_split[i])):
all_gen[i][j][key] = key_value_split[i][j]
else:
raise NotImplementedError
return all_gen
def split_gen_new(gen, batch_gpu, batch_size, device):
if type(gen) == torch.Tensor:
all_gen = gen.view((gen.shape[0] * gen.shape[1],) + (gen.shape[2:])).pin_memory().to(device)
all_gen = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen.split(batch_size)]
elif type(gen[0]) == dict:
all_gen = [[{} for _ in range(batch_size // batch_gpu)] for _ in
range(int(len(gen) * list(gen[0].values())[0].shape[0] // batch_size))]
for key in gen[0].keys():
key_value = torch.cat([sub[key] for sub in gen], dim=0).pin_memory().to(device)
key_value_split = [phase_gen_c.split(batch_gpu) for phase_gen_c in key_value.split(batch_size)]
for i in range(len(key_value_split)):
for j in range(len(key_value_split[i])):
all_gen[i][j][key] = key_value_split[i][j]
else:
raise NotImplementedError
return all_gen
@torch.no_grad()
# similar to the fetch_random_params
def fetch_dataset(phase_real_z, phase_real_latent, phase_real_c_1_d, phase_real_c_2_d, phase_real_c_3_d,
phase_real_v_1_d, phase_real_v_2_d, phase_real_v_s, motion_1, motion_2, motion_ffhq, model_list,
vae_triplane, vae_std, vae_mean, render):
batchsize = phase_real_z.shape[0]
cur_z = phase_real_z.unsqueeze(1).repeat(1, 3, 1) # [b,1,512]
# cur_latent = phase_real_latent.unsqueeze(1).repeat(1, 1, 1, 1, 1) # [b,3,c, h, w]
c_1 = phase_real_c_1_d.unsqueeze(1)
c_2 = phase_real_c_2_d.unsqueeze(1)
c_3 = phase_real_c_3_d.unsqueeze(1)
cur_c = torch.cat([c_1, c_2, c_3], 1) # from ffhq
exp_d_1 = phase_real_v_1_d.unsqueeze(1) # motion_1 from vfhq
exp_d_2 = phase_real_v_2_d.unsqueeze(1) # motion_2 from vfhq
exp_s = phase_real_v_s.unsqueeze(1).repeat(1, 3, 1, 1, 1) # motion_3 from ffhq for static similar to Portrait4D
cur_exp_params = torch.cat([exp_d_1, exp_d_2, exp_d_2], dim=1)
cur_exp_out = torch.cat([cur_exp_params[:batchsize // 2], exp_s[batchsize // 2:]], dim=0)
model_list_out = [val for val in model_list for i in range(3)]
model_list_out = listfunc(model_list_out, 3)
assert phase_real_latent.shape[0] == batchsize
cano_tri = vae_triplane.decode(phase_real_latent.to(torch.float16))
cano_tri = cano_tri.float()
cano_tri = rearrange(cano_tri, "b c f h w -> b f c h w")
ref_tri = cano_tri * vae_std + vae_mean
exp_target = cur_exp_out[:, 2]
# ref_tri_out = render.gen_triplane(ref_tri, exp_target)
motion_1_out = torch.cat([motion_1[:batchsize // 2], motion_ffhq[batchsize // 2:]], dim=0)
motion_2_out = torch.cat([motion_2[:batchsize // 2], motion_ffhq[batchsize // 2:]], dim=0)
# always half static
return cur_z, cur_c, cur_exp_out, motion_1_out, motion_2_out, model_list_out, cano_tri, ref_tri, exp_target
# choose random FLAME parameters for online data synthesis (torch version)
def gan_model(gan_models, device, gan_model_base_dir):
gan_model_dict = gan_models["gan_models"]
gan_model_load = {}
for model_name in gan_model_dict.keys():
model_pkl = os.path.join(gan_model_base_dir, model_name + '.pkl')
with dnnlib.util.open_url(model_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
G_new = TriPlaneGenerator(*G.init_args, **G.init_kwargs).eval().requires_grad_(False).to(device)
misc.copy_params_and_buffers(G, G_new, require_all=True)
G_new.neural_rendering_resolution = G.neural_rendering_resolution
G_new.rendering_kwargs = G.rendering_kwargs
gan_model_load[model_name] = G_new
return gan_model_load
def listfunc(listTemp, n):
out_list = []
for i in range(0, len(listTemp), n):
each = listTemp[i:i + n]
out_list.append(each)
return out_list
def collate_fn(data):
model_list = [example["model_name"] for example in data]
phase_real_z = torch.cat([example["phase_real_z"] for example in data], dim=0)
phase_real_latent = torch.cat([example["phase_real_latent"] for example in data], dim=0)
phase_real_c_1_d = torch.cat([example["phase_real_c_1_d"] for example in data], dim=0)
phase_real_c_2_d = torch.cat([example["phase_real_c_2_d"] for example in data], dim=0)
phase_real_c_3_d = torch.cat([example["phase_real_c_3_d"] for example in data], dim=0)
phase_real_v_s = torch.cat([example["phase_real_v_s"] for example in data], dim=0)
motion_ffhq = torch.cat([example["motion_ffhq"] for example in data], dim=0)
motion_1 = torch.cat([example["motion_1"] for example in data], dim=0)
motion_2 = torch.cat([example["motion_2"] for example in data], dim=0)
phase_real_v_1_d = torch.cat([example["phase_real_v_1_d"] for example in data], dim=0)
phase_real_v_2_d = torch.cat([example["phase_real_v_2_d"] for example in data], dim=0)
return phase_real_z, phase_real_latent, phase_real_c_1_d, phase_real_c_2_d, phase_real_c_3_d, phase_real_v_1_d, phase_real_v_2_d, phase_real_v_s, motion_1, motion_2, motion_ffhq, model_list
# ----------------------------------------------------------------------------
def training_loop(
run_dir='.', # Output directory.
training_set_kwargs={}, # Options for training set.
data_loader_kwargs={}, # Options for torch.utils.data.DataLoader.
G_kwargs={}, # Options for generator network.
D_kwargs={}, # Options for discriminator network.
D_patch_kwargs={}, # Options for patch discriminator (deprecated).
G_opt_kwargs={}, # Options for generator optimizer.
D_opt_kwargs={}, # Options for discriminator optimizer.
D_patch_opt_kwargs={}, # Options for patch discriminator optimizer (deprecated).
augment_kwargs=None, # Options for augmentation pipeline. None = disable.
loss_kwargs={}, # Options for loss function.
metrics=[], # Metrics to evaluate during training.
random_seed=0, # Global random seed.
num_gpus=1, # Number of GPUs participating in the training.
rank=0, # Rank of the current process in [0, num_gpus[.
batch_size=4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus.
batch_gpu=4, # Number of samples processed at a time by one GPU.
ema_kimg=10, # Half-life of the exponential moving average (EMA) of generator weights.
ema_rampup=0.05, # EMA ramp-up coefficient. None = no rampup.
G_reg_interval=None, # How often to perform regularization for G? None = disable lazy regularization.
D_reg_interval=16, # How often to perform regularization for D? None = disable lazy regularization.
D_patch_reg_interval=16, # How often to perform regularization for D patch (deprecated)
augment_p=0, # Initial value of augmentation probability.
ada_target=None, # ADA target value. None = fixed p.
ada_interval=4, # How often to perform ADA adjustment?
ada_kimg=500,
# ADA adjustment speed, measured in how many kimg it takes for p to increase/decrease by one unit.
total_kimg=25000, # Total length of the training, measured in thousands of real images.
kimg_per_tick=4, # Progress snapshot interval.
image_snapshot_ticks=50, # How often to save image snapshots? None = disable.
network_snapshot_ticks=50, # How often to save network snapshots? None = disable.
resume_pkl=None, # Network pickle to resume training from.
resume_kimg=0, # First kimg to report when resuming training.
cudnn_benchmark=True, # Enable torch.backends.cudnn.benchmark?
abort_fn=None,
# Callback function for determining whether to abort training. Must return consistent results across ranks.
progress_fn=None, # Callback function for updating training progress. Called for all ranks.
motion_scale=1.0, # Scale of the motion-related cross-attention outputs.
swapping_prob=0.5, # Probability to set dynamic data as static data.
half_static=True, # Whether or not to set the second half of the batchsize as static data.
resume_pkl_G_syn=None, # Checkpoint of pre-trained GenHead generator for training data synthesis.
truncation_psi=0.7, # Truncation rate of GenHead for training data synthesis.
cross_lr_scale=1.0, # Learning rate scale of the motion-related cross attentions.
gan_model_base_dir=None,
vae_pretrained=None,
render_pretrain=None,
vae_triplane_config=None,
pretrain_portrait_4D = None,
load_tri_pretrain = True,
):
# Initialize.
start_time = time.time()
device = torch.device('cuda', rank)
np.random.seed(random_seed * num_gpus + rank)
torch.manual_seed(random_seed * num_gpus + rank)
torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed.
torch.backends.cuda.matmul.allow_tf32 = False # Improves numerical accuracy.
torch.backends.cudnn.allow_tf32 = False # Improves numerical accuracy.
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False # Improves numerical accuracy.
conv2d_gradfix.enabled = True # Improves training speed. # TODO: ENABLE
grid_sample_gradfix.enabled = False # Avoids errors with the augmentation pipe.
# Load training set.
batch_size_dataset = batch_size // num_gpus
if rank == 0:
print('Loading training set...')
training_set = dnnlib.util.construct_class_by_name(
**training_set_kwargs) # subclass of training.dataset.Dataset
# Construct networks.
if rank == 0:
print('Constructing networks...')
common_kwargs = dict(c_dim=25, img_resolution=512, img_channels=3)
G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(
device) # subclass of torch.nn.Module
for m in G.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
D_img_channel = training_set.num_channels * 3 if G_kwargs.rendering_kwargs.get(
'gen_lms_cond') else training_set.num_channels * 2
# if G_kwargs.rendering_kwargs.get('gen_mask_cond'): D_img_channel += 1
D = dnnlib.util.construct_class_by_name(c_dim=25, img_resolution=512,
img_channels=D_img_channel, **D_kwargs).train().requires_grad_(False).to(
device) # subclass of torch.nn.Module
# Load pre-trained GenHead model
if rank == 0:
print(f'Resuming GenHead from "{resume_pkl_G_syn}"')
config_gan_model = OmegaConf.load(resume_pkl_G_syn)
G_syn_dict = gan_model(config_gan_model, device, gan_model_base_dir)
# with dnnlib.util.open_url(resume_pkl_G_syn) as f:
# G_syn = legacy.load_network_pkl(f)['G_ema'].eval().requires_grad_(False).to(device)
# G_syn = PartTriPlaneGeneratorDeform(*G_syn_meta.init_args, **G_syn_meta.init_kwargs).eval().requires_grad_(False).to(device)
# misc.copy_params_and_buffers(G_syn_meta, G_syn, require_all=False)
# G_syn.neural_rendering_resolution = G_syn_meta.neural_rendering_resolution
# G_syn.rendering_kwargs = G_syn_meta.rendering_kwargs
# For VAE decoder
config_vae_triplane = OmegaConf.load(vae_triplane_config)
vae_triplane = AutoencoderKLTriplane(ddconfig=config_vae_triplane['ddconfig'], lossconfig=None,
embed_dim=8)
vae_triplane_model_file = os.path.join(vae_pretrained, 'pytorch_model.bin')
if not os.path.isfile(vae_triplane_model_file):
raise RuntimeError(f"{vae_triplane_model_file} does not exist")
vae_triplane_state_dict = torch.load(vae_triplane_model_file, map_location="cpu")
vae_triplane.load_state_dict(vae_triplane_state_dict)
vae_triplane.requires_grad_(False)
vae_triplane = vae_triplane.to(device, dtype=torch.float16)
# For rendering
Rendering = RenderingClass(device, config_vae_triplane['render_network_pkl'],
ws_avg_pkl=config_vae_triplane['ws_avg'])
data_std = torch.load(config_vae_triplane['std_dir']).to(device).reshape(1, -1, 1, 1, 1)
data_mean = torch.load(config_vae_triplane['mean_dir']).to(device).reshape(1, -1, 1, 1, 1)
# For LPIPS loss computation
lpips = LPIPS(vgg_path=config_vae_triplane['vgg_path'], net='vgg', model_path=config_vae_triplane['vgg']).to(device)
set_requires_grad(lpips, requires_grad=False)
# For ID loss computation
idloss = IDLoss(config_vae_triplane['ir_se50'])
idloss = idloss.eval().to(device)
set_requires_grad(idloss, requires_grad=False)
# For PD-FGC motion embedding extraction
# pd_fgc = FanEncoder()
# weight_dict = torch.load(motion_pretrained)
# pd_fgc.load_state_dict(weight_dict, strict=False)
# pd_fgc = pd_fgc.eval().to(device)
# set_requires_grad(pd_fgc, requires_grad=False)
# set D_patch for 3D-to-2D imitation (deprecated), see Mimic3D for details: https://github.com/SeanChenxy/Mimic3D check this
D_patch = None
# if loss_kwargs.patch_scale < 1:
# img_resolution = loss_kwargs.neural_rendering_resolution_initial if loss_kwargs.neural_rendering_resolution_final is None else loss_kwargs.neural_rendering_resolution_final
# common_patch_kwargs = dict(c_dim=0, img_resolution=img_resolution, img_channels=3)
# D_patch = dnnlib.util.construct_class_by_name(**D_patch_kwargs, **common_patch_kwargs).train().requires_grad_(
# False).to(device) # subclass of torch.nn.Module
# if pretrain_portrait_4D is not None and resume_pkl is None:
# print(f'Resuming encoders from "{pretrain_portrait_4D}"')
# with dnnlib.util.open_url(pretrain_portrait_4D) as f:
# print("Reloading Modules!")
# load_model = legacy.load_network_pkl(f)
# G_encoder = load_model['G_ema']
# misc.copy_params_and_buffers(G_encoder.encoder_global, G.encoder_global )
# misc.copy_params_and_buffers(G_encoder.encoder_detail, G.encoder_detail )
# del G_encoder
if (resume_pkl is None) and (rank == 0):
print(f'Resuming rendering and super and D from "{render_pretrain}"')
with dnnlib.util.open_url(render_pretrain) as f:
print("Reloading Modules!")
load_model = legacy.load_network_pkl(f)
G_deco = load_model['G_ema']
D_deco = load_model['D']
misc.copy_params_and_buffers(G_deco.decoder, G.decoder, require_all=True)
misc.copy_params_and_buffers(G_deco.renderer, G.renderer, require_all=True)
misc.copy_params_and_buffers(G_deco.ray_sampler, G.ray_sampler, require_all=True)
misc.copy_params_and_buffers(G_deco.superresolution, G.superresolution, require_all=True)
misc.copy_params_and_buffers(D_deco, D, require_all=True)
# if load_tri_pretrain:
# misc.copy_params_and_buffers(Rendering.Render.face_backbone, G.face_backbone, require_all=True)
# misc.copy_params_and_buffers(Rendering.Render.triplnae_encoder, G.triplnae_encoder, require_all=True)
G_ema = copy.deepcopy(G).eval()
# Resume from existing pickle.
if (resume_pkl is not None) and (rank == 0):
print(f'Resuming from "{resume_pkl}"')
with dnnlib.util.open_url(resume_pkl) as f:
resume_data = legacy.load_network_pkl(f)
load_model = [('G', G), ('G_ema', G_ema)]
if D is not None:
load_model.append(('D', D))
if D_patch is not None:
load_model.append(('D_patch', D_patch))
for name, module in load_model:
if name in resume_data and resume_data[name] is not None:
misc.copy_params_and_buffers(resume_data[name], module, require_all=False)
else:
print(f'resume_data do not have {name}')
if 'augment_pipe' in resume_data and resume_data['augment_pipe'] is not None:
augment_p = resume_data['augment_pipe'].p
# Setup augmentation.
if rank == 0:
print('Setting up augmentation...')
augment_pipe = None
ada_stats = None
if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None):
augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(
device) # subclass of torch.nn.Module
augment_pipe.p.copy_(torch.as_tensor(augment_p))
if ada_target is not None:
ada_stats = training_stats.Collector(regex='Loss/signs/real')
# Distribute across GPUs.
if rank == 0:
print(f'Distributing across {num_gpus} GPUs...')
for module in [G, D, G_ema, augment_pipe, lpips, D_patch]:
if module is not None:
for param in misc.params_and_buffers(module):
if param.numel() > 0 and num_gpus > 1:
torch.distributed.broadcast(param, src=0)
# Setup training phases.
if rank == 0:
print('Setting up training phases...')
# conditioning_params = torch.load(config_vae_triplane['conditioning_params_dir']).to(device)
loss = dnnlib.util.construct_class_by_name(device=device, G=G, D=D, G_syn=G_syn_dict, D_patch=D_patch,
augment_pipe=augment_pipe, lpips=lpips, id_loss=idloss,
conditioning_params=config_vae_triplane['conditioning_params_dir'], w_avg=config_vae_triplane['ws_avg'],
**loss_kwargs) # subclass of training.loss.Loss
phases = []
phases_asserts = [('G', G, G_opt_kwargs, G_reg_interval), ]
if D is not None:
phases_asserts.append(('D', D, D_opt_kwargs, D_reg_interval))
# no d_patch
if D_patch is not None:
phases_asserts.append(('D_patch', D_patch, D_patch_opt_kwargs, D_patch_reg_interval))
for name, module, opt_kwargs, reg_interval in phases_asserts:
# if G_update_all is False:
# parameter_names = [n for (n, p) in module.named_parameters() if 'superresolution' not in n and not ('decoder' in n and 'encoder_global' not in n) and 'bn' not in n] # do not update mlp and super-resolution following Real-Time Radiance Fields for Single-Image Portrait View Synthesis
# else:
parameter_names = [n for (n, p) in module.named_parameters() if 'bn' not in n]
if name == 'G':
parameters_group = []
parameters_cross_names = [n for n in parameter_names if 'encoder_canonical' in n and (
'maps' in n or 'maps_neutral' in n or 'proj_y' in n or 'proj_y_neutral' in n or 'norm2' in n or 'attn2' in n)]
parameters_base_names = [n for n in parameter_names if not n in parameters_cross_names]
parameters_cross = [p for (n, p) in module.named_parameters() if n in parameters_cross_names]
parameters_base = [p for (n, p) in module.named_parameters() if n in parameters_base_names]
parameters_group.append({'params': parameters_cross, 'name': 'G_cross'})
parameters_group.append({'params': parameters_base, 'name': 'G_base'})
parameters = parameters_group
else:
parameters = [p for (n, p) in module.named_parameters() if n in parameter_names]
if reg_interval is None:
opt = dnnlib.util.construct_class_by_name(parameters, **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name + 'both', module=module, opt=opt, interval=1)]
else: # Lazy regularization.
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = dnnlib.EasyDict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
opt = dnnlib.util.construct_class_by_name(parameters, **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name + 'main', module=module, opt=opt, interval=1)]
phases += [dnnlib.EasyDict(name=name + 'reg', module=module, opt=opt, interval=reg_interval)]
if name == 'G':
for param_group in opt.param_groups:
if param_group['name'] == 'G_cross':
param_group['lr'] = param_group['lr'] * cross_lr_scale
for phase in phases:
phase.start_event = None
phase.end_event = None
if rank == 0:
phase.start_event = torch.cuda.Event(enable_timing=True)
phase.end_event = torch.cuda.Event(enable_timing=True)
# Export sample images.
grid_size = None
grid_z = None
grid_c = None
training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus,
seed=random_seed)
training_set_iterator = iter(
torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, collate_fn=collate_fn,
batch_size=batch_size // num_gpus, **data_loader_kwargs))
val_set_iterator = iter(
torch.utils.data.DataLoader(dataset=training_set ,collate_fn=collate_fn, shuffle=True,
batch_size=4, num_workers=1))
if rank == 0:
print('Exporting sample images...')
batch_gpu_val = 4
grid_size, cur_z_vals, cur_c_vals, cur_exp_out_vals, motion_1_out_vals, motion_2_out_vals, model_list_out_vals, ref_tri_vals = setup_snapshot_image_grid_gallery(
val_set_iterator, vae_triplane, data_std, data_mean, Rendering, device)
grid_size = (2, 2)
cur_z_vals = cur_z_vals.split(batch_gpu_val)
cur_c_vals = cur_c_vals.split(batch_gpu_val)
cur_exp_out_vals = cur_exp_out_vals.split(batch_gpu_val)
model_list_out_vals = listfunc(model_list_out_vals, batch_gpu_val)
motion_1_out_vals = motion_1_out_vals.split(batch_gpu_val)
motion_2_out_vals = motion_2_out_vals.split(batch_gpu_val)
ref_tri_vals = ref_tri_vals.split(batch_gpu_val)
out = []
ref_out = []
grid_c = []
grid_c_recon = []
kkkk = 0
with torch.no_grad():
for cur_z_val, cur_exp_out_val, cur_c_val, model_list_out_val, ref_tri_val in \
zip(cur_z_vals, cur_exp_out_vals, cur_c_vals, model_list_out_vals, ref_tri_vals):
syn_out = loss.gen_data_by_G_next3D(cur_z_val, cur_exp_out_val, cur_c_val, model_list_out_val)
ref_tri_tri = Rendering.gen_triplane(ref_tri_val, cur_exp_out_val[:,2])
ref_imgs_out = Rendering.get_img_with_tri(ref_tri_tri, syn_out['c'][:,2])
grid_c_recon.append(syn_out['c'][:,2])
out.append(syn_out)
ref_out.append(ref_imgs_out)
grid_c_recon.append(torch.load(config_vae_triplane['syn_out_c_path']).to(device))
images_all = torch.cat([o['image_sr'] for o in out], dim=0)
ref_imgs_all_val = torch.cat(ref_out, dim=0)
images_all = images_all.reshape(-1, 3, *images_all.shape[-3:])
images_app_val = images_all[:, 0]
images_mot_val = images_all[:, 1]
images_recon_val = images_all[:, 2]
save_image_grid_all(127.5 * (images_app_val.cpu().numpy() + 1), 127.5 * (images_mot_val.cpu().numpy() + 1),
127.5 * (images_recon_val.cpu().numpy() + 1), 127.5 * (ref_imgs_all_val.cpu().numpy() + 1),
os.path.join(run_dir, 'reals.png'),
drange=[0, 255], grid_size=grid_size)
# grid_c = torch.cat(grid_c)
images_app_val = images_app_val.split(batch_gpu_val)
images_mot_val = images_mot_val.split(batch_gpu_val)
# grid_c = grid_c.split(batch_gpu)
# Initialize logs.
if rank == 0:
print('Initializing logs...')
stats_collector = training_stats.Collector(regex='.*')
stats_metrics = dict()
stats_jsonl = None
stats_tfevents = None
if rank == 0:
stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt')
try:
import torch.utils.tensorboard as tensorboard
stats_tfevents = tensorboard.SummaryWriter(run_dir)
except ImportError as err:
print('Skipping tfevents export:', err)
# Train.
if rank == 0:
print(f'Training for {total_kimg} kimg...')
print()
cur_nimg = resume_kimg * 1000
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - start_time
batch_idx = 0
if progress_fn is not None:
progress_fn(0, total_kimg)
batch_num = batch_size // num_gpus
while True:
# Fetch training data.
with torch.autograd.profiler.record_function('data_fetch'):
phase_real_z, phase_real_latent, phase_real_c_1_d, phase_real_c_2_d, phase_real_c_3_d, phase_real_v_1_d, phase_real_v_2_d, phase_real_v_s, motion_1, motion_2, motion_ffhq, model_list = next(
training_set_iterator)
phase_real_z, phase_real_c, phase_real_exp_params, motion_1, motion_2, model_list, phase_real_cano_tri, phase_real_ref_tri, phase_real_exp_params_target = fetch_dataset(
phase_real_z.to(device), phase_real_latent.to(device), phase_real_c_1_d.to(device), phase_real_c_2_d.to(device), phase_real_c_3_d.to(device), phase_real_v_1_d.to(device),
phase_real_v_2_d.to(device), phase_real_v_s.to(device), motion_1.to(device), motion_2.to(device), motion_ffhq.to(device), model_list, vae_triplane, data_std,
data_mean, Rendering)
phase_real_z = phase_real_z.split(batch_gpu)
# phase_real_latent = phase_real_latent.split(batch_gpu).to(device)
phase_real_c = phase_real_c.split(batch_gpu)
phase_real_exp_params = phase_real_exp_params.split(batch_gpu)
phase_real_motions_app = motion_1.split(batch_gpu)
phase_real_motions = motion_2.split(batch_gpu)
phase_real_cano_tri = phase_real_cano_tri.split(batch_gpu)
phase_real_ref_tri = phase_real_ref_tri.split(batch_gpu)
phase_real_model_list = listfunc(model_list, batch_gpu)
phase_real_exp_params_target = phase_real_exp_params_target.split(batch_gpu)
# ---------------------------------------------------------------------------------------------------------------------------------------
# Online data generation. For efficiency, use same generated data for different phases
phase_real_img_app = []
phase_real_img_mot = []
phase_real_img_recon = []
phase_real_depth_recon = []
phase_real_feature_recon = []
phase_real_triplane_recon = []
phase_real_c_recon = []
# phase_real_motions_app = []
# phase_real_motions = []
# phase_real_triplane_latent_recon = []
with torch.no_grad():
for real_z, real_pose_params, real_exp_params, real_models in \
zip(phase_real_z, phase_real_c, phase_real_exp_params, phase_real_model_list):
syn_out = loss.gen_data_by_G_next3D(real_z, real_exp_params, real_pose_params, real_models)
# Multiview images
real_img = syn_out['image_sr']
real_img = real_img.reshape(-1, 3, *real_img.shape[1:])
real_img_app = real_img[:, 0]
real_img_mot = real_img[:, 1]
real_img_recon = real_img[:, 2]
# Segmentation masks
# Camera poses
real_c_recon = syn_out['c']
# real_c_recon = real_c_recon.reshape(-1, 3, *real_c_recon.shape[1:])
real_c_recon = real_c_recon[:, 2]
# Depth images
real_depth_recon = syn_out['image_depth']
real_depth_recon = real_depth_recon.reshape(-1, 3, *real_depth_recon.shape[1:])
real_depth_recon = real_depth_recon[:, 2]
# Feature maps before super-resolution module
real_feature_recon = syn_out['image_feature']
real_feature_recon = real_feature_recon.reshape(-1, 3, *real_feature_recon.shape[1:])
real_feature_recon = real_feature_recon[:, 2]
# Sampled tri-plane features
real_triplane_recon = syn_out['triplane']
real_triplane_recon = real_triplane_recon.reshape(-1, 3, *real_triplane_recon.shape[1:])
real_triplane_recon = real_triplane_recon[:, 2]
# Sampled latent recon
# real_triplane_latent_recon = syn_out['vae_out_tri']
phase_real_img_app.append(real_img_app)
phase_real_img_mot.append(real_img_mot)
phase_real_img_recon.append(real_img_recon)
phase_real_depth_recon.append(real_depth_recon)
phase_real_feature_recon.append(real_feature_recon)
phase_real_triplane_recon.append(real_triplane_recon)
phase_real_c_recon.append(real_c_recon)
# phase_real_motions_app.append(real_motions_app)
# phase_real_motions.append(real_motions)
# phase_real_triplane_latent_recon.append(real_triplane_latent_recon)
# Execute training phases.
for phase in phases:
if batch_idx % phase.interval != 0:
continue
if phase.start_event is not None:
phase.start_event.record(torch.cuda.current_stream(device))
# Accumulate gradients.
phase.opt.zero_grad(set_to_none=True)
phase.module.requires_grad_(True)
for real_img_app, real_img_mot, real_img_recon, real_depth_recon, real_feature_recon, real_triplane_recon, real_c_recon, real_motions_app, real_motions, real_cano_tri, real_ref_tri, real_exp_target in \
zip(phase_real_img_app, phase_real_img_mot, phase_real_img_recon, phase_real_depth_recon,
phase_real_feature_recon, phase_real_triplane_recon, phase_real_c_recon, phase_real_motions_app,
phase_real_motions, phase_real_cano_tri, phase_real_ref_tri, phase_real_exp_params_target):
loss.accumulate_gradients(phase=phase.name, real_img_app=real_img_app, real_img_mot=real_img_mot,
real_img_recon=real_img_recon,
real_depth_recon=real_depth_recon, real_feature_recon=real_feature_recon,
real_triplane_recon=real_triplane_recon,
real_c_recon=real_c_recon, mesh= real_exp_target, motions_app=real_motions_app,
motions=real_motions,
real_cano_tri=real_cano_tri, real_ref_tri=real_ref_tri,
gain=phase.interval, cur_nimg=cur_nimg,
motion_scale=motion_scale, swapping_prob=swapping_prob,
half_static=half_static)
phase.module.requires_grad_(False)
# Update weights.
with torch.autograd.profiler.record_function(phase.name + '_opt'):
# Do not update mlp decoder and super-resolution module at the warm-up stage following Live3dportrait: https://arxiv.org/abs/2305.02310
if cur_nimg <= loss.discrimination_kimg * 1e3 and phase.name == 'G':
sub_params = [p for (n, p) in phase.module.named_parameters() if
'superresolution' in n or ('decoder' in n and 'encoder_global' not in n)]
for param in sub_params:
if param.grad is not None:
param.grad.zero_()
params = [param for param in phase.module.parameters() if param.numel() > 0 and param.grad is not None]
if len(params) > 0:
flat = torch.cat([param.grad.flatten() for param in params])
if num_gpus > 1:
torch.distributed.all_reduce(flat)
flat /= num_gpus
misc.nan_to_num(flat, nan=0, posinf=1e5, neginf=-1e5, out=flat)
grads = flat.split([param.numel() for param in params])
for param, grad in zip(params, grads):
param.grad = grad.reshape(param.shape)
phase.opt.step()
# Phase done.
if phase.end_event is not None:
phase.end_event.record(torch.cuda.current_stream(device))
# Update G_ema.
with torch.autograd.profiler.record_function('Gema'):
ema_nimg = ema_kimg * 1000
if ema_rampup is not None:
ema_nimg = min(ema_nimg, cur_nimg * ema_rampup)
ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8))
for p_ema, p in zip(G_ema.parameters(), G.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(G_ema.buffers(), G.buffers()):
b_ema.copy_(b)
G_ema.neural_rendering_resolution = G.neural_rendering_resolution
G_ema.rendering_kwargs = G.rendering_kwargs.copy()
# Update state.
cur_nimg += batch_size
batch_idx += 1
# Execute ADA heuristic.
if (ada_stats is not None) and (batch_idx % ada_interval == 0):
ada_stats.update()
adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (
ada_kimg * 1000)
augment_pipe.p.copy_((augment_pipe.p + adjust).max(misc.constant(0, device=device)))
# Perform maintenance tasks once per tick.
done = (cur_nimg >= total_kimg * 1000)
if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000):
continue
# Print status line, accumulating the same information in training_stats.
tick_end_time = time.time()
fields = []
fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"]
fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"]
fields += [
f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"]
fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"]
fields += [
f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"]
fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"]
fields += [
f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2 ** 30):<6.2f}"]
fields += [
f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2 ** 30):<6.2f}"]
fields += [
f"reserved {training_stats.report0('Resources/peak_gpu_mem_reserved_gb', torch.cuda.max_memory_reserved(device) / 2 ** 30):<6.2f}"]
torch.cuda.reset_peak_memory_stats()
fields += [
f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"]
training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60))
training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60))
if rank == 0:
print(' '.join(fields))
# Check for abort.
if (not done) and (abort_fn is not None) and abort_fn():
done = True
if rank == 0:
print()
print('Aborting...')
# Save image snapshot.
if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0):
print('Saving images...')
out = []
for image_app, image_mot, motion_app, motion, ref_tri, c, exp_vals in zip(
images_app_val, images_mot_val,
motion_1_out_vals, motion_2_out_vals, ref_tri_vals, grid_c_recon, cur_exp_out_vals):
with torch.no_grad():
out.append(
G_ema(image_app, image_mot, motion_app, motion, c=c, mesh= exp_vals[:, 2], triplane_recon=ref_tri, ws_avg=Rendering.ws_avg,
motion_scale=motion_scale))
if 'image' in out[0]:
images = torch.cat([o['image'].cpu() for o in out]).numpy()
print(111111111111111111111111111111)
print(images.shape)
print(images.max())
print(images.min())
save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg // 1000:06d}.png'), drange=[-1, 1],
grid_size=grid_size)
if 'image_depth' in out[0]:
images_depth = -torch.cat([o['image_depth'].cpu() for o in out]).numpy()
save_image_grid(images_depth, os.path.join(run_dir, f'fakes{cur_nimg // 1000:06d}_depth.png'),
drange=[images_depth.min(), images_depth.max()], grid_size=grid_size)
if 'image_sr' in out[0] and out[0]['image_sr'] is not None:
images_sr = torch.cat([o['image_sr'].cpu() for o in out]).numpy()
save_image_grid(images_sr, os.path.join(run_dir, f'fakes{cur_nimg // 1000:06d}_sr.png'), drange=[-1, 1],
grid_size=grid_size)
# Save network snapshot.
snapshot_pkl = None
snapshot_data = None
if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0):
snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs))
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('D_patch', D_patch),
('augment_pipe', augment_pipe)]:
if module is not None:
if num_gpus > 1:
misc.check_ddp_consistency(module, ignore_regex=r'.*\.[^.]+_(avg|ema)')
module = copy.deepcopy(module).eval().requires_grad_(False).cpu()
snapshot_data[name] = module
del module # conserve memory
snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg // 1000:06d}.pkl')
if rank == 0:
with open(snapshot_pkl, 'wb') as f:
pickle.dump(snapshot_data, f)
# Collect statistics.
for phase in phases:
value = []
if (phase.start_event is not None) and (phase.end_event is not None):
phase.end_event.synchronize()
value = phase.start_event.elapsed_time(phase.end_event)
training_stats.report0('Timing/' + phase.name, value)
stats_collector.update()
stats_dict = stats_collector.as_dict()
# Update logs.
timestamp = time.time()
if stats_jsonl is not None:
fields = dict(stats_dict, timestamp=timestamp)
stats_jsonl.write(json.dumps(fields) + '\n')
stats_jsonl.flush()
if stats_tfevents is not None:
global_step = int(cur_nimg / 1e3)
walltime = timestamp - start_time
for name, value in stats_dict.items():
stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime)
for name, value in stats_metrics.items():
stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime)
stats_tfevents.flush()
if progress_fn is not None:
progress_fn(cur_nimg // 1000, total_kimg)
# Update state.
cur_tick += 1
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - tick_end_time
if done:
break
# Done.
if rank == 0:
print()
print('Exiting...')
# ----------------------------------------------------------------------------
|