Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,448 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# Loss for Portrait4D, modified from EG3D: https://github.com/NVlabs/eg3d
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Loss functions."""
import numpy as np
import PIL
import torch
import torch.nn.functional as F
import torchvision.transforms as transform
# from kornia.geometry import warp_affine
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import upfirdn2d
from recon.training.discriminator.dual_discriminator_next3D import filtered_resizing
import cv2
from PIL import Image
# from recon.utils.preprocess import estimate_norm_torch, estimate_norm_torch_pdfgc
from camera_utils import LookAtPoseSampler, FOV_to_intrinsics
# ----------------------------------------------------------------------------
class Loss:
def accumulate_gradients(self, phase, real_img_app, real_img_mot, real_img_recon, real_depth_recon,
real_feature_recon, real_triplane_recon,
real_c_recon, motions_app, motions, gain, cur_nimg, real_cano_tri, real_ref_tri,
motion_scale=1.0, swapping_prob=0.5, half_static=False): # to be overridden by subclass
raise NotImplementedError()
# ----------------------------------------------------------------------------
class AnimatableGalleryPortraitReconLoss(Loss):
def __init__(self, device, G, D, G_syn, D_patch=None, augment_pipe=None, lpips=None, facenet=None, pd_fgc=None,
gmain=1.0, r1_gamma=10, r1_gamma_patch=10, r1_gamma_uv=30,
r1_gamma_seg=10, style_mixing_prob=0, pl_weight=0, pl_batch_shrink=2, pl_decay=0.01,
pl_no_weight_grad=False, blur_init_sigma=0, blur_init_sigma_patch=0, blur_fade_kimg=0,
blur_patch_seg=0, r1_gamma_init=0, r1_gamma_fade_kimg=0, neural_rendering_resolution_initial=64,
neural_rendering_resolution_final=None, neural_rendering_resolution_fade_kimg=0,
gpc_reg_fade_kimg=1000, gpc_reg_prob=None, discrimination_kimg=1000, dual_discrimination=False,
filter_mode='antialiased', patch_scale=1.0, patch_gan=0.2, masked_sampling=None, perturb_params=False, id_loss=None,
use_D=True, truncation_psi=0.7, conditioning_params=None, w_avg=None):
super().__init__()
self.device = device
self.G = G
self.D = D
self.G_syn = G_syn
self.D_patch = D_patch
self.augment_pipe = augment_pipe
self.lpips = lpips
self.pd_fgc = pd_fgc
self.gmain = gmain
self.r1_gamma = r1_gamma
self.r1_gamma_patch = r1_gamma_patch
self.r1_gamma_uv = r1_gamma_uv
self.r1_gamma_seg = r1_gamma_seg
self.style_mixing_prob = style_mixing_prob
self.pl_weight = pl_weight
self.pl_batch_shrink = pl_batch_shrink
self.pl_decay = pl_decay
self.pl_no_weight_grad = pl_no_weight_grad
self.pl_mean = torch.zeros([], device=device)
self.blur_init_sigma = blur_init_sigma
self.blur_init_sigma_patch = blur_init_sigma_patch
self.blur_fade_kimg = blur_fade_kimg
self.blur_patch_seg = blur_patch_seg
self.r1_gamma_init = r1_gamma_init
self.r1_gamma_fade_kimg = r1_gamma_fade_kimg
self.bg_reg = True
self.c_headpose = False
self.neural_rendering_resolution_initial = neural_rendering_resolution_initial
self.neural_rendering_resolution_final = neural_rendering_resolution_final
self.neural_rendering_resolution_fade_kimg = neural_rendering_resolution_fade_kimg
self.gpc_reg_fade_kimg = gpc_reg_fade_kimg
self.gpc_reg_prob = gpc_reg_prob
self.discrimination_kimg = discrimination_kimg
self.dual_discrimination = dual_discrimination
self.filter_mode = filter_mode
self.resample_filter = upfirdn2d.setup_filter([1, 3, 3, 1], device=device)
self.blur_raw_target = True
assert self.gpc_reg_prob is None or (0 <= self.gpc_reg_prob <= 1)
self.patch_scale = patch_scale
self.masked_sampling = masked_sampling
self.patch_gan = patch_gan
self.perturb_params = perturb_params
self.use_D = use_D
self.truncation_psi = truncation_psi
self.conditioning_params = torch.load(conditioning_params ).to(device)
self.w_avg = torch.load(w_avg).to(device)[0]
self.id_loss = id_loss.to(device)
# extract pdfgc motion embedding
# def get_motion_feature(self, imgs, lmks, crop_size=224, crop_len=16):
#
# trans_m = estimate_norm_torch_pdfgc(lmks, imgs.shape[-1])
# imgs_warp = warp_affine(imgs, trans_m, dsize=(224, 224))
# imgs_warp = imgs_warp[:, :, :crop_size - crop_len * 2, crop_len:crop_size - crop_len]
# imgs_warp = torch.clamp(F.interpolate(imgs_warp, size=[crop_size, crop_size], mode='bilinear'), -1, 1)
#
# out = self.pd_fgc(imgs_warp)
# motions = torch.cat([out[1], out[2], out[3]], dim=-1)
#
# return motions
# generate online training data using pre-trained Next3d model. the first frame is fixed
@torch.no_grad()
def gen_data_by_G_next3D(self, z, exp_params, c, model_name_list,
render_res=64):
out_sr_img = []
out_img_raw = []
out_img_depth = []
out_static_plane = []
out_feature_img = []
out_triplane = []
out_texture = []
out_rendering_stitch = []
batchsize_subject = z.shape[0]
# assert batchsize_subject == 3
# cam_pivot = torch.tensor(self.G_syn.rendering_kwargs.get('avg_camera_pivot', [0, 0, 0]), device=device)
# cam_radius = self.G_syn.rendering_kwargs.get('avg_camera_radius', 2.7)
# conditioning_cam2world_pose = LookAtPoseSampler.sample(np.pi / 2, np.pi / 2, cam_pivot, radius=cam_radius,
# device=device)
# conditioning_params = torch.cat([conditioning_cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1).to(
# device)
# w = G.mapping(z, conditioning_params, truncation_psi=0.7, truncation_cutoff=14)
# latent = latent.reshape(-1, *latent.shape[2:])
assert len(model_name_list) == z.shape[0]
model_name_list = [name for name1 in model_name_list for name in name1 ]
z = z.reshape(-1, *z.shape[2:]) # (b*3, 512)
assert len(model_name_list) == z.shape[0]
exp_params = exp_params.reshape(-1, *exp_params.shape[2:]) # (b*3, 100)
c = c.reshape(-1, *c.shape[2:]) # (b*3, 25)
# out_motion = [real_motion_1, real_motion_2]
# random head rotation
angle_ys_head = torch.rand((z.shape[0], 1), device=z.device) * 0.60 * 2 - 0.60
angle_ys_head2 = torch.rand((z.shape[0], 1), device=z.device) * 0.35 * 2 - 0.35 + 0.2
# angle_ys_head3 = torch.rand((z.shape[0], 1), device=z.device) * 0.25 * 2 - 0.25
# random camera pose
cam_pivot_x = torch.rand((z.shape[0], 1), device=z.device) * 0.02 - 0.01
cam_pivot_y = torch.rand((z.shape[0], 1), device=z.device) * 0.02 - 0.01
cam_pivot_z = torch.rand((z.shape[0], 1), device=z.device) * 0.02 - 0.01 + 0.03
cam_pivot = torch.cat([cam_pivot_x * 3, cam_pivot_y * 3, cam_pivot_z * 3], dim=-1)
# cam_radius = torch.rand((z.shape[0], 1), device=z.device) * 0.8 + 2.7
cam2world_pose = LookAtPoseSampler.sample(np.pi / 2 + angle_ys_head, np.pi / 2 - angle_ys_head2, cam_pivot,
radius=2.7,
batch_size=z.shape[0], device=z.device)
c_syn = torch.cat([cam2world_pose.reshape(-1, 16), c[:, 16:].reshape(-1, 9)], dim=-1)
prob = torch.rand((c.shape[0], 1), device=c.device)
c_syn = c_syn
c_syn_final_out = c_syn.reshape(-1, 3, c_syn.shape[-1])
for batch_index, model_name in enumerate(model_name_list):
z_value = z[batch_index].unsqueeze(0)
ws = self.G_syn[model_name].mapping(z_value, self.conditioning_params, truncation_psi=self.truncation_psi,
truncation_cutoff=14)
vert_value = exp_params[batch_index].unsqueeze(0)
c = c_syn[batch_index].unsqueeze(0)
out = self.G_syn[model_name].synthesis(ws, c, vert_value, noise_mode='const',
neural_rendering_resolution=128, return_featmap=True
)
# img = (out['image'][0] * 127.5 + 128).clamp(0, 255).to(torch.uint8)
# img = img.permute(1, 2, 0)
# img = img.cpu().numpy()
# img = Image.fromarray(np.uint8(img))
# print('savesavesavesavesavesave')
# save_dir = f'/home/liuhongyu/code/HeadArtist2/HeadGallery/training-runs-portrait4d/00073--multi_style-gpus2-batch8/{batch_index}.png'
# print(save_dir)
# # cv2.imwrite(save_dir, img)
# img.save(save_dir)
out_sr_img.append(out['image'])
out_img_raw.append(out['image_raw'])
out_img_depth.append(out['image_depth'])
out_static_plane.append(out['static_plane'])
out_feature_img.append(out['image_feature'])
out_triplane.append(out['triplane'])
out_rendering_stitch.append(out['rendering_stitch'])
final_out = {'image_sr': torch.cat(out_sr_img), 'image': torch.cat(out_img_raw),
'image_depth': torch.cat(out_img_depth), 'static_plane': torch.cat(out_static_plane),
'image_feature': torch.cat(out_feature_img), 'triplane': torch.cat(out_triplane),
'rendering_stitch': torch.cat(out_rendering_stitch),
'c': c_syn_final_out,
# 'motions': out_motion
}
return final_out
def run_G(self, imgs_app, imgs_mot, motions_app, motions, c, mesh, real_cano_tri, real_ref_tri,
neural_rendering_resolution,
motion_scale=1.0, swapping_prob=0.5, half_static=False):
motion_scale = torch.ones([imgs_app.shape[0], 1, 1], device=c.device) * motion_scale
if swapping_prob is not None:
imgs_app_swapped = imgs_mot
prob = torch.rand((imgs_app.shape[0], 1), device=c.device)
imgs_app_conditioning = torch.where(prob.reshape(imgs_app.shape[0], 1, 1, 1) < swapping_prob,
imgs_app_swapped, imgs_app)
motion_scale_conditioning = torch.where(prob.reshape(imgs_app.shape[0], 1, 1) < swapping_prob,
torch.zeros_like(motion_scale), motion_scale)
motions_app_conditioning = torch.where(prob < swapping_prob, motions, motions_app)
else:
imgs_app_conditioning = imgs_app
motion_scale_conditioning = motion_scale
motions_app_conditioning = motions_app
# whether or not the second half of the batchsize are static data
# If true, set motion scale to zero to deactivate motion-related cross-attention layers.
if half_static:
num_static = imgs_app.shape[0] // 2
if swapping_prob is None:
motion_scale_conditioning = torch.cat([motion_scale[:num_static], motion_scale[num_static:] * 0], dim=0)
else:
prob = torch.rand((num_static, 1), device=c.device)
motion_scale_static = torch.where(prob.reshape(num_static, 1, 1) < 1 - swapping_prob,
torch.zeros_like(motion_scale[num_static:]),
motion_scale[num_static:])
motion_scale_conditioning = torch.cat([motion_scale_conditioning[:num_static], motion_scale_static],
dim=0)
gen_output = self.G.synthesis(imgs_app_conditioning, imgs_mot, motions_app_conditioning, motions, c, mesh,
real_ref_tri, real_ref_tri, self.w_avg,
neural_rendering_resolution=neural_rendering_resolution,
motion_scale=motion_scale_conditioning)
return gen_output
def run_D(self, img, c, blur_sigma=0, blur_sigma_raw=0, update_emas=False):
blur_size = np.floor(blur_sigma * 3)
if blur_size > 0:
with torch.autograd.profiler.record_function('blur'):
if self.G.has_superresolution:
f = torch.arange(-blur_size, blur_size + 1, device=img['image_sr'].device).div(
blur_sigma).square().neg().exp2()
img['image_sr'] = upfirdn2d.filter2d(img['image_sr'], f / f.sum())
else:
f = torch.arange(-blur_size, blur_size + 1, device=img['image'].device).div(
blur_sigma).square().neg().exp2()
img['image'] = upfirdn2d.filter2d(img['image'], f / f.sum())
logits = self.D(img, c, update_emas=update_emas)
return logits
def accumulate_gradients(self, phase, real_img_app, real_img_mot, real_img_recon, real_depth_recon,
real_feature_recon, real_triplane_recon,
real_c_recon, mesh, motions_app, motions, gain, cur_nimg, real_cano_tri, real_ref_tri,
motion_scale=1.0, swapping_prob=0.5, half_static=True ):
if self.G.rendering_kwargs.get('density_reg', 0) == 0:
phase = {'Greg': 'none', 'Gboth': 'Gmain'}.get(phase, phase)
if self.r1_gamma == 0:
phase = {'Dreg': 'none', 'Dboth': 'Dmain'}.get(phase, phase)
# if self.r1_gamma_patch == 0:
# phase = {'D_patchreg': 'none', 'D_patchboth': 'Dmain'}.get(phase, phase)
blur_sigma = 0
r1_gamma = self.r1_gamma
# r1_gamma_patch = self.r1_gamma_patch
# r1_gamma_uv = self.r1_gamma_uv
# r1_gamma_seg = self.r1_gamma_seg
if self.neural_rendering_resolution_final is not None:
alpha = min(
max((cur_nimg - self.discrimination_kimg * 1e3) / (self.neural_rendering_resolution_fade_kimg * 1e3),
0), 1) # begin fading when D starts to be optimized
neural_rendering_resolution = int(np.rint(self.neural_rendering_resolution_initial * (
1 - alpha) + self.neural_rendering_resolution_final * alpha))
neural_rendering_resolution_patch = self.neural_rendering_resolution_final
else:
neural_rendering_resolution = self.neural_rendering_resolution_initial
neural_rendering_resolution_patch = neural_rendering_resolution
if self.G.has_superresolution:
real_img_raw = filtered_resizing(real_img_recon, size=neural_rendering_resolution, f=self.resample_filter,
filter_mode=self.filter_mode)
if self.blur_raw_target and blur_sigma > 0:
blur_size = np.floor(blur_sigma * 3)
if blur_size > 0:
f = torch.arange(-blur_size, blur_size + 1, device=real_img_raw.device).div(
blur_sigma).square().neg().exp2()
real_img_raw = upfirdn2d.filter2d(real_img_raw, f / f.sum())
real_img = {'image_sr': real_img_recon, 'image': real_img_raw,
}
else:
real_img = {'image': real_img_recon}
# Gmain: Maximize logits for generated images.
if phase in ['Gmain', 'Gboth']:
with torch.autograd.profiler.record_function('Gmain_forward'):
gen_img = self.run_G(real_img_app, real_img_mot, motions_app, motions, real_c_recon, mesh, real_cano_tri, real_ref_tri,
neural_rendering_resolution=neural_rendering_resolution,
motion_scale=motion_scale, swapping_prob=swapping_prob, half_static=half_static)
# main image-level reconstruction loss
gen_img_recon = gen_img['image_sr']
gen_img_recon_raw = gen_img['image']
gen_depth = gen_img['image_depth']
gen_feature = gen_img['image_feature']
gen_triplane_recon = gen_img['triplane']
loss_recon_lpips = self.lpips(gen_img_recon, real_img_recon) + self.lpips(gen_img_recon_raw,
real_img_raw)
training_stats.report('Loss/G/lrecon_lpips', loss_recon_lpips)
loss_recon_l1 = torch.abs(gen_img_recon - real_img_recon).mean() + torch.abs(
gen_img_recon_raw - real_img_raw).mean()
training_stats.report('Loss/G/lrecon_l1', loss_recon_l1)
# use id loss after seeing 400k images
if cur_nimg < 400 * 1e3:
loss_id = 0
else:
loss_id = self.id_loss(gen_img_recon, real_img_recon)
training_stats.report('G_Loss/real/loss_id', loss_id)
# use depth loss before seeing 400k images
if real_depth_recon is not None:
if real_depth_recon.shape != gen_depth.shape:
real_depth_recon = F.interpolate(real_depth_recon, size=[gen_depth.shape[2], gen_depth.shape[3]], mode='bilinear',
antialias=True)
loss_recon_depth = torch.abs(
(real_depth_recon - gen_depth)).mean()
training_stats.report('Loss/G/lrecon_depth', loss_recon_depth)
else:
loss_recon_depth = 0.
# use feature map loss before seeing 400k images
if real_feature_recon is not None:
if real_feature_recon.shape != gen_feature.shape:
real_feature_recon = F.interpolate(real_feature_recon, size=[gen_feature.shape[2], gen_feature.shape[3]], mode='bilinear',
antialias=True)
loss_recon_feature = torch.abs(real_feature_recon - gen_feature).mean()
training_stats.report('Loss/G/lrecon_feature', loss_recon_feature)
else:
loss_recon_feature = 0.
# use triplane feature loss before seeing 400k images
if real_triplane_recon is not None:
loss_recon_triplane = torch.abs(real_triplane_recon - gen_triplane_recon).mean()
training_stats.report('Loss/G/lrecon_triplane', loss_recon_triplane)
else:
loss_recon_triplane = 0.
loss_recon = loss_recon_lpips + loss_recon_l1 + loss_recon_depth + loss_recon_feature + loss_recon_triplane*0.1 + loss_id
# adversarial loss after warm-up stage
if cur_nimg >= self.discrimination_kimg * 1e3 and self.use_D:
gen_logits = self.run_D(gen_img, real_c_recon, blur_sigma=blur_sigma)
loss_Gmain = torch.nn.functional.softplus(-gen_logits)
training_stats.report('Loss/scores/fake', gen_logits)
training_stats.report('Loss/signs/fake', gen_logits.sign())
training_stats.report('Loss/G/loss', loss_Gmain)
else:
loss_Gmain = None
with torch.autograd.profiler.record_function('Gmain_backward'):
loss_G = loss_recon.mean()
if loss_Gmain is not None:
loss_G += loss_Gmain.mean() * self.gmain
loss_G.mul(gain).backward()
# # Density Regularization
if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs[
'reg_type'] == 'l1':
initial_coordinates = torch.rand((real_c_recon.shape[0], 1000, 3), device=real_c_recon.device) * 2 - 1
perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * \
self.G.rendering_kwargs['density_reg_p_dist']
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
motion_scale = torch.ones([real_img_app.shape[0], 1, 1], device=real_img_app.device) * motion_scale
if swapping_prob is not None:
real_img_app_swapped = real_img_mot
prob = torch.rand((real_img_app.shape[0], 1), device=real_img_app.device)
real_img_app_conditioning = torch.where(prob.reshape(real_img_app.shape[0], 1, 1, 1) < swapping_prob,
real_img_app_swapped, real_img_app)
motion_scale_conditioning = torch.where(prob.reshape(real_img_app.shape[0], 1, 1) < swapping_prob,
torch.zeros_like(motion_scale), motion_scale)
motions_app_conditioning = torch.where(prob < swapping_prob, motions, motions_app)
else:
real_img_app_conditioning = real_img_app
motion_scale_conditioning = motion_scale
motions_app_conditioning = motions_app
if half_static:
num_static = real_img_app.shape[0] // 2
if swapping_prob is None:
motion_scale_conditioning = torch.cat([motion_scale[:num_static], motion_scale[num_static:] * 0],
dim=0)
else:
prob = torch.rand((num_static, 1), device=real_img_app.device)
motion_scale_static = torch.where(prob.reshape(num_static, 1, 1) < 1 - swapping_prob,
torch.zeros_like(motion_scale[num_static:]),
motion_scale[num_static:])
motion_scale_conditioning = torch.cat([motion_scale_conditioning[:num_static], motion_scale_static],
dim=0)
out = self.G.sample_mixed(real_img_app_conditioning, real_img_mot, mesh, self.w_avg, motions_app_conditioning, motions,
all_coordinates, torch.randn_like(all_coordinates), real_cano_tri, real_ref_tri,
motion_scale=motion_scale_conditioning)
if isinstance(out, tuple):
TVloss = 0
for out_ in out:
sigma = out_['sigma'][:, :initial_coordinates.shape[1] * 2]
sigma_initial = sigma[:, :sigma.shape[1] // 2]
sigma_perturbed = sigma[:, sigma.shape[1] // 2:]
TVloss += torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs[
'density_reg'] / len(out)
training_stats.report('Loss/G/TVloss', TVloss)
else:
sigma = out['sigma'][:, :initial_coordinates.shape[1] * 2]
sigma_initial = sigma[:, :sigma.shape[1] // 2]
sigma_perturbed = sigma[:, sigma.shape[1] // 2:]
TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs[
'density_reg']
training_stats.report('Loss/G/TVloss', TVloss)
(TVloss).mul(gain).backward()
# Dmain: Minimize logits for generated images.
if cur_nimg >= self.discrimination_kimg * 1e3 and self.use_D:
loss_Dgen = 0
if phase in ['Dmain', 'Dboth']:
with torch.autograd.profiler.record_function('Dgen_forward'):
gen_img = self.run_G(real_img_app, real_img_mot, motions_app, motions, real_c_recon, mesh, real_cano_tri,
real_ref_tri,
neural_rendering_resolution=neural_rendering_resolution,
motion_scale=motion_scale, swapping_prob=swapping_prob,
half_static=half_static)
gen_logits = self.run_D(gen_img, real_c_recon, blur_sigma=blur_sigma, update_emas=True)
training_stats.report('Loss/scores/fake', gen_logits)
training_stats.report('Loss/signs/fake', gen_logits.sign())
loss_Dgen = torch.nn.functional.softplus(gen_logits)
with torch.autograd.profiler.record_function('Dgen_backward'):
loss_Dgen.mean().mul(gain).backward()
# Dmain: Maximize logits for real images.
# Dr1: Apply R1 regularization.
if phase in ['Dmain', 'Dreg', 'Dboth']:
name = 'Dreal' if phase == 'Dmain' else 'Dr1' if phase == 'Dreg' else 'Dreal_Dr1'
with torch.autograd.profiler.record_function(name + '_forward'):
real_img_tmp_image = real_img['image_sr'].detach().requires_grad_(phase in ['Dreg', 'Dboth'])
real_img_tmp_image_raw = real_img['image'].detach().requires_grad_(phase in ['Dreg', 'Dboth'])
real_img_tmp = {'image_sr': real_img_tmp_image, 'image': real_img_tmp_image_raw}
real_logits = self.run_D(real_img_tmp, real_c_recon, blur_sigma=blur_sigma)
training_stats.report('Loss/scores/real', real_logits)
training_stats.report('Loss/signs/real', real_logits.sign())
loss_Dreal = 0
if phase in ['Dmain', 'Dboth']:
loss_Dreal = torch.nn.functional.softplus(-real_logits)
training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal)
loss_Dr1 = 0
if phase in ['Dreg', 'Dboth']:
if self.dual_discrimination:
with torch.autograd.profiler.record_function(
'r1_grads'), conv2d_gradfix.no_weight_gradients():
r1_grads = torch.autograd.grad(outputs=[real_logits.sum()],
inputs=[real_img_tmp['image_sr'],
real_img_tmp['image']], create_graph=True,
only_inputs=True)
r1_grads_image = r1_grads[0]
r1_grads_image_raw = r1_grads[1]
r1_penalty = r1_grads_image.square().sum([1, 2, 3]) + r1_grads_image_raw.square().sum(
[1, 2, 3])
else: # single discrimination
with torch.autograd.profiler.record_function(
'r1_grads'), conv2d_gradfix.no_weight_gradients():
if self.G.has_superresolution:
r1_grads = torch.autograd.grad(outputs=[real_logits.sum()],
inputs=[real_img_tmp['image_sr']], create_graph=True,
only_inputs=True)
else:
r1_grads = torch.autograd.grad(outputs=[real_logits.sum()],
inputs=[real_img_tmp['image']], create_graph=True,
only_inputs=True)
r1_grads_image = r1_grads[0]
r1_penalty = r1_grads_image.square().sum([1, 2, 3])
loss_Dr1 = r1_penalty * (r1_gamma / 2)
training_stats.report('Loss/r1_penalty', r1_penalty)
training_stats.report('Loss/D/reg', loss_Dr1)
with torch.autograd.profiler.record_function(name + '_backward'):
(loss_Dreal + loss_Dr1).mean().mul(gain).backward()
|