File size: 7,340 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Discriminator for GenHead and Portrait4D, modified from EG3D: https://github.com/NVlabs/eg3d

# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

import numpy as np
import torch
from torch_utils import persistence
from torch_utils.ops import upfirdn2d
from models.stylegan.networks_stylegan2 import DiscriminatorBlock, MappingNetwork, DiscriminatorEpilogue

#----------------------------------------------------------------------------

def filtered_resizing(image_orig_tensor, size, f, filter_mode='antialiased'):
    if filter_mode == 'antialiased':
        ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=True)
    elif filter_mode == 'classic':
        ada_filtered_64 = upfirdn2d.upsample2d(image_orig_tensor, f, up=2)
        ada_filtered_64 = torch.nn.functional.interpolate(ada_filtered_64, size=(size * 2 + 2, size * 2 + 2), mode='bilinear', align_corners=False)
        ada_filtered_64 = upfirdn2d.downsample2d(ada_filtered_64, f, down=2, flip_filter=True, padding=-1)
    elif filter_mode == 'none':
        ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False)
    elif type(filter_mode) == float:
        assert 0 < filter_mode < 1

        filtered = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=True)
        aliased  = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=False)
        ada_filtered_64 = (1 - filter_mode) * aliased + (filter_mode) * filtered
        
    return ada_filtered_64

#----------------------------------------------------------------------------

@persistence.persistent_class
class DualDiscriminatorDeform(torch.nn.Module):
    def __init__(self,
        c_dim,                          # Conditioning label (C) dimensionality.
        img_resolution,                 # Input resolution.
        img_channels,                   # Number of input color channels.
        architecture        = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
        channel_base        = 32768,    # Overall multiplier for the number of channels.
        channel_max         = 512,      # Maximum number of channels in any layer.
        num_fp16_res        = 4,        # Use FP16 for the N highest resolutions.
        conv_clamp          = 256,      # Clamp the output of convolution layers to +-X, None = disable clamping.
        cmap_dim            = None,     # Dimensionality of mapped conditioning label, None = default.
        disc_c_noise        = 0,        # Corrupt camera parameters with X std dev of noise before disc. pose conditioning.
        block_kwargs        = {},       # Arguments for DiscriminatorBlock.
        mapping_kwargs      = {},       # Arguments for MappingNetwork.
        epilogue_kwargs     = {},       # Arguments for DiscriminatorEpilogue.
        has_superresolution = False,
        has_uv = True,
        has_seg = False,
    ):
        super().__init__()
        self.has_superresolution = has_superresolution
        self.has_uv = has_uv
        self.has_seg = has_seg
        if has_superresolution:
            img_channels *= 2
        if has_uv:
            img_channels += 3
        if has_seg:
            img_channels += 1

        self.c_dim = c_dim
        self.img_resolution = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels = img_channels
        self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)

        if cmap_dim is None:
            cmap_dim = channels_dict[4]
        if c_dim == 0:
            cmap_dim = 0

        common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
        cur_layer_idx = 0
        for res in self.block_resolutions:
            in_channels = channels_dict[res] if res < img_resolution else 0
            tmp_channels = channels_dict[res]
            out_channels = channels_dict[res // 2]
            use_fp16 = (res >= fp16_resolution)
            block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
                first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
            setattr(self, f'b{res}', block)
            cur_layer_idx += block.num_layers
        if c_dim > 0:
            self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
        self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
        self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
        self.disc_c_noise = disc_c_noise

    def forward(self, img, c, img_name='image_sr', img_raw_name='image', uv_name='uv', seg_name='seg', update_emas=False, **block_kwargs):

        if self.has_uv:
            if self.img_resolution != img[uv_name].shape[-1]:
                uv = filtered_resizing(img[uv_name], size=self.img_resolution, f=self.resample_filter)
            else:
                uv = img[uv_name]
        if self.has_seg:
            if self.img_resolution != img[seg_name].shape[-1]: 
                seg = filtered_resizing(img[seg_name], size=self.img_resolution, f=self.resample_filter)
            else:
                seg = img[seg_name]
            
        if self.has_superresolution:
            image_raw = filtered_resizing(img[img_raw_name], size=img[img_name].shape[-1], f=self.resample_filter)
            img = torch.cat([img[img_name], image_raw], 1)
            if self.has_uv:
                img = torch.cat([img, uv], 1)
            if self.has_seg:
                img = torch.cat([img, seg], 1)
        else:
            img = img[img_name]
            if self.has_uv:
                img = torch.cat([img, uv], 1)
            if self.has_seg:
                img = torch.cat([img, seg], 1)


        _ = update_emas # unused
        x = None
        for res in self.block_resolutions:
            block = getattr(self, f'b{res}')
            x, img = block(x, img, **block_kwargs)

        cmap = None
        if self.c_dim > 0:
            if self.disc_c_noise > 0: c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
            cmap = self.mapping(None, c)
        x = self.b4(x, img, cmap)
        return x

    def extra_repr(self):
        return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'