Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,991 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Streaming images and labels from datasets created with dataset_tool.py."""
import os
from unittest import skip
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import dnnlib
import cv2
try:
import pyspng
except ImportError:
pyspng = None
mouth_idx = list(range(22, 52))
class Dataset(torch.utils.data.Dataset):
def __init__(self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
use_labels=True, # Enable conditioning labels? False = label dimension is zero.
xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
load_obj=True,
return_name=False,
random_seed=0, # Random seed to use when applying max_size.
):
self._name = name
self._raw_shape = list(raw_shape)
self._use_labels = use_labels
self._raw_labels = None
self._label_shape = None
self.load_obj = load_obj
self.return_name = return_name
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels() if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert self._raw_labels.ndim == 1
assert np.all(self._raw_labels >= 0)
self._raw_labels_std = self._raw_labels.std(0)
return self._raw_labels
def close(self): # to be overridden by subclass
pass
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_verts_ply(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_geo(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_labels(self): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
image = self._load_raw_image(self._raw_idx[idx], resolution=self.resolution)
# assert isinstance(image, np.ndarray)
# assert list(image.shape) == self.image_shape
# assert image.dtype == np.uint8
label_cam = self.get_label(idx)
mesh_cond = self.get_vert(self._raw_idx[idx])
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
if self._use_labels:
label_1 = label_cam[0:25]
label_2 = label_cam[25:]
assert label_1.shape == (25,)
assert label_2.shape == (25,)
label_1[[1, 2, 3, 4, 8]] *= -1
label_2[[1, 2, 3, 4, 8]] *= -1
label_cam = np.concatenate([label_1, label_2], axis=-1)
if self.return_name:
return self._image_fnames[self._raw_idx[idx]], image.copy(), label_cam, mesh_cond
else:
return image.copy(), label_cam, mesh_cond
def load_random_data(self):
gen_cond_sample_idx = [np.random.randint(self.__len__()) for _ in range(self.random_sample_num)]
all_gen_c = np.stack([self.get_label(i) for i in gen_cond_sample_idx])
all_gen_v = [self.get_vert(i) for i in gen_cond_sample_idx]
all_gt_img = np.stack([self.get_image(i).astype(np.float32) / 127.5 - 1 for i in gen_cond_sample_idx])
return all_gen_c, all_gen_v, all_gt_img
def get_by_name(self, name):
raw_idx = self._image_fnames.index(name)
image = self._load_raw_image(raw_idx, resolution=self.resolution)
mesh_cond = self.get_vert(raw_idx)
label = self._get_raw_labels()[raw_idx]
cam = self._raw_cams[raw_idx]
label_cam = np.concatenate([label, cam], axis=-1)
return image.copy(), label_cam, mesh_cond
def get_label(self, idx):
raise NotImplementedError
def get_vert(self, idx):
raise NotImplementedError
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = (int(self._xflip[idx]) != 0)
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
return d
def get_label_std(self):
return self._raw_labels_std
@property
def name(self):
return self._name
@property
def image_shape(self):
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._get_raw_labels()
if raw_labels.dtype == np.int64:
self._label_shape = [int(np.max(raw_labels)) + 1]
else:
self._label_shape = raw_labels.shape[1:]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
# @property
# def gen_label_dim(self):
# return 25 # 25 for camera params only
@property
def has_labels(self):
return any(x != 0 for x in [25])
@property
def has_onehot_labels(self):
return self._get_raw_labels().dtype == np.int64
class ImageFolderDataset(Dataset):
def __init__(self,
path, # Path to directory or zip.
data_label_path,
label_file_vfhq,
label_file_ffhq,
mesh_path_ffhq,
motion_path_ffhq,
mesh_path_vfhq,
motion_path_vfhq,
mesh_path_ffhq_label,
mesh_path_vfhq_label,
resolution=512,
static=False,
**super_kwargs,
):
self._path = path
self._mesh_ffhq = mesh_path_ffhq
self._motion_ffhq = np.load(motion_path_ffhq)
# self._label_ffhq = np.load(label_file_ffhq)
self._mesh_vfhq = mesh_path_vfhq
self._motion_vfhq = np.load(motion_path_vfhq, allow_pickle=True)
# self._label_vfhq = np.load(label_file_vfhq)
self._data_label_path = data_label_path
self.data_json = json.loads(open(data_label_path).read())
PIL.Image.init()
self._raw_cams_ffhq = json.loads(open(label_file_ffhq).read())['labels']
self.mesh_path_ffhq_label = json.loads(open(mesh_path_ffhq_label).read())
self.mesh_path_vfhq_label = json.loads(open(mesh_path_vfhq_label).read())
# self._image_fnames = list(dict(json.loads(open(self._raw_cams_ffhq).read())['labels']).keys())
# self._raw_cams_vfhq = self._load_raw_label(self._mesh_path_vfhq, 'labels')
self.all_input_ids = list(self.data_json.keys())
name = os.path.splitext(os.path.basename(self._path))[0]
# raw_shape = [len(self._image_fnames)] + [3, resolution, resolution]
raw_shape = [len(self.all_input_ids)] + list([3, 512, 512])
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return len(self.all_input_ids)
# phase_real_z, phase_real_latent, phase_real_c_1_d, phase_real_c_2_d, phase_real_c_3_d, phase_real_v_1_d, phase_real_v_2_d, phase_real_v_s, motion_1, motion_2, motion_ffhq, model_list
def __getitem__(self, idx):
for _ in range(20):
try:
return self.getdata(idx)
except Exception as e:
print(f"Error details: {str(e)}")
idx = np.random.randint(len(self))
raise RuntimeError('Too many bad data.')
def getdata(self, idx):
base_dir = self.all_input_ids[idx]
model_name = self.data_json[base_dir]
latent_dir = os.path.join(self._path, base_dir, '0.pt')
latent_dit_dir = os.path.join(self._path, base_dir, '0_dit.pt')
phase_real_z = torch.load(latent_dir).float()
phase_real_latent = torch.load(latent_dit_dir).float()
phase_real_c_1_d, phase_real_c_2_d, phase_real_c_3_d = self.get_label(idx)
motion_ffhq, phase_real_v_s = self.get_ffhq_motion()
motion_1, motion_2, phase_real_v_1_d, phase_real_v_2_d = self.get_vfhq_motion()
return {
"model_name": model_name,
"phase_real_z": phase_real_z,
"phase_real_latent": phase_real_latent,
"phase_real_c_1_d": phase_real_c_1_d.unsqueeze(0),
"phase_real_c_2_d": phase_real_c_2_d.unsqueeze(0),
"phase_real_c_3_d": phase_real_c_3_d.unsqueeze(0),
"phase_real_v_s": phase_real_v_s.unsqueeze(0),
"motion_ffhq": motion_ffhq.unsqueeze(0),
"motion_1": motion_1.unsqueeze(0),
"motion_2": motion_2.unsqueeze(0),
"phase_real_v_1_d": phase_real_v_1_d.unsqueeze(0),
"phase_real_v_2_d": phase_real_v_2_d.unsqueeze(0)
}
@staticmethod
def _file_ext(fname):
return os.path.splitext(fname)[1].lower()
def _get_zipfile(self):
assert self._type == 'zip'
if self._zipfile is None:
self._zipfile = zipfile.ZipFile(self._path)
return self._zipfile
def _open_file(self, fname, path=None):
if not path:
path = self._path
if self._type == 'dir':
return open(os.path.join(path, fname), 'rb')
if self._type == 'zip':
return self._get_zipfile().open(fname, 'r')
return None
def close(self):
try:
if self._zipfile is not None:
self._zipfile.close()
finally:
self._zipfile = None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_label(self, json_path, sub_key=None):
with open(json_path, 'rb') as f:
labels = json.load(f)
if sub_key is not None: labels = labels[sub_key]
labels = dict(labels)
labels = [labels[fname.replace('\\', '/')] for fname in self._image_fnames]
return np.array(labels).astype(np.float32)
def _load_raw_image_core(self, fname, path=None, resolution=None):
with self._open_file(fname, path) as f:
image = PIL.Image.open(f)
if resolution:
image = image.resize((resolution, resolution))
image = np.array(image) # .astype(np.float32)
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _load_raw_motion(self, raw_idx, resolution=None):
fname = self._image_fnames[raw_idx]
image = self._load_raw_image_core(fname, resolution=resolution) # [C, H, W]
return image
def _load_vfhq_raw_labels(self):
labels = self._load_raw_label(os.path.join(self._path, self.label_file), 'labels')
return labels
def _load_ffhq_raw_labels(self):
labels = self._load_raw_label(os.path.join(self._path, self.label_file), 'labels')
return labels
def get_vert(self, vert_dir):
uvcoords_image = np.load(os.path.join(vert_dir))[...,
:3] # [HW3] 前两维date range(-1, 1),第三维是face_mask,最后一维是render_mask
uvcoords_image[..., -1][uvcoords_image[..., -1] < 0.5] = 0;
uvcoords_image[..., -1][uvcoords_image[..., -1] >= 0.5] = 1
# out = {'uvcoords_image': torch.tensor(uvcoords_image.copy()).float()}
return torch.tensor(uvcoords_image.copy()).float()
def load_random_data(self):
gen_cond_sample_idx = [np.random.randint(self.__len__()) for _ in range(self.random_sample_num)]
all_gen_c = np.stack([self.get_label(i) for i in gen_cond_sample_idx])
all_gen_v = [self.get_vert(i) for i in gen_cond_sample_idx]
all_gt_img = np.stack([self.get_image(i).astype(np.float32) / 127.5 - 1 for i in gen_cond_sample_idx])
return all_gen_c, all_gen_v, all_gt_img
def get_label(self, idx):
# all_nums = self._raw_cams_ffhq
gen_cond_sample_idx = [np.random.randint(len(self._raw_cams_ffhq)) for _ in range(3)]
cam = [self._raw_cams_ffhq[i][1] for i in gen_cond_sample_idx]
return torch.tensor(np.array(cam[0]).astype(np.float32)).float(), torch.tensor(np.array(cam[1]).astype(np.float32)).float(), torch.tensor(np.array(cam[2]).astype(np.float32)).float()
def get_ffhq_motion(self):
assert len(self.mesh_path_ffhq_label) == self._motion_ffhq.shape[0]
gen_cond_sample_idx = np.random.randint(self._motion_ffhq.shape[0])
motion = self._motion_ffhq[gen_cond_sample_idx]
vert_dir = os.path.join(self._mesh_ffhq, self.mesh_path_ffhq_label[gen_cond_sample_idx])
vert = self.get_vert(vert_dir)
return torch.tensor(motion).float(), vert
def get_vfhq_motion(self):
assert len(self.mesh_path_vfhq_label) == self._motion_vfhq.shape[0]
gen_cond_sample_idx_row = np.random.randint(self._motion_vfhq.shape[0])
motions = self._motion_vfhq[gen_cond_sample_idx_row]
verts = self.mesh_path_vfhq_label[gen_cond_sample_idx_row]
assert motions.shape[0] == len(verts)
# print('motions.shape', motions.shape)
# print('motions.shape[0]', motions.shape[0])
gen_cond_sample_idx_col = np.random.randint(motions.shape[0], size=2)
motions_1 = motions[gen_cond_sample_idx_col[0]]
motions_2 = motions[gen_cond_sample_idx_col[1]]
verts_1_dir = os.path.join(self._mesh_vfhq, verts[gen_cond_sample_idx_col[0]])
verts_2_dir = os.path.join(self._mesh_vfhq, verts[gen_cond_sample_idx_col[1]])
verts_1 = self.get_vert(verts_1_dir)
verts_2 = self.get_vert(verts_2_dir)
return torch.tensor(motions_1).float(), torch.tensor(motions_2).float(), verts_1, verts_2
|