Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,455 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
# Training script of Portrait4D, modified from EG3D: https://github.com/NVlabs/eg3d
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Train a 4D head reconstructor using the techniques described in the paper
"Portrait4D: Learning One-Shot 4D Head Avatar Synthesis using Synthetic Data."
"""
from configs import cfg as opts
import os
import click
import re
import json
import tempfile
import torch
import sys
import dnnlib
from training import training_loop_recon_gallery as training_loop
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
# ----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
if c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank,
world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank,
world_size=c.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
# ----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
# ----------------------------------------------------------------------------
def init_dataset_kwargs(opts, class_name='training.dataloader.dataset_gallery.ImageFolderDataset'):
try:
dataset_kwargs = dnnlib.EasyDict(class_name=class_name,
path=opts.data, data_label_path=opts.data_label_path,
label_file_vfhq=opts.label_file_vfhq, label_file_ffhq=opts.label_file_ffhq,
mesh_path_ffhq = opts.mesh_path_ffhq, motion_path_ffhq=opts.motion_path_ffhq, mesh_path_vfhq=opts.mesh_path_vfhq, motion_path_vfhq=opts.motion_path_vfhq,
use_labels=True, max_size=None, xflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
# ----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
# ----------------------------------------------------------------------------
def main(**kwargs):
# Initialize config.
# opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(class_name=None, mot_dims = 548)
c.D_kwargs = dnnlib.EasyDict(class_name=None,
block_kwargs=dnnlib.EasyDict(), mapping_kwargs=dnnlib.EasyDict(),
epilogue_kwargs=dnnlib.EasyDict())
c.D_patch_kwargs = dnnlib.EasyDict(class_name=None, block_kwargs=dnnlib.EasyDict(),
epilogue_kwargs=dnnlib.EasyDict())
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0.9, 0.999], eps=1e-5)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0.9, 0.999], eps=1e-5)
c.D_patch_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0, 0.99], eps=1e-5)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.loss_recon_gallery.AnimatablePortraitReconLoss')
c.data_loader_kwargs = dnnlib.EasyDict()
# Training set.
c.training_set_kwargs, dataset_name = init_dataset_kwargs(opts)
# c.training_set_kwargs = dnnlib.EasyDict(class_name='online', resolution=512, data_type=None, path='',
# use_labels=True, max_size=None, xflip=False)
# dataset_name = 'online'
# if opts.static:
# dataset_name += '-static'
if opts.cond and not c.training_set_kwargs.use_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
c.training_set_kwargs.use_labels = opts.cond
c.training_set_kwargs.xflip = opts.mirror
c.training_set_kwargs.static = opts.static # set true for static multiview reconstruction
# c.training_set_kwargs.motion_params_path1 = opts.motion_params_path1 # check what is this
# c.training_set_kwargs.motion_params_path2 = opts.motion_params_path2
# Hyperparameters & settings.
c.num_gpus = opts.gpus
c.resume_kimg = opts.resume_kimg
c.batch_size = opts.batch
c.batch_gpu = opts.batch_gpu or opts.batch // opts.gpus
c.G_kwargs.channel_base = c.D_kwargs.channel_base = opts.cbase
c.G_kwargs.channel_max = c.D_kwargs.channel_max = opts.cmax
c.D_kwargs.block_kwargs.freeze_layers = opts.freezed
c.D_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group
c.D_patch_kwargs.block_kwargs.freeze_layers = opts.freezed
c.D_patch_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group
c.loss_kwargs.r1_gamma = opts.gamma
c.loss_kwargs.r1_gamma_seg = opts.gamma_seg # check what is this
c.loss_kwargs.r1_gamma_patch = opts.gamma_patch# check what is this
c.loss_kwargs.truncation_psi = opts.truncation_psi # check what is this
c.G_opt_kwargs.lr = opts.glr
c.cross_lr_scale = opts.cross_lr_scale # check what is this
c.motion_scale = 1 if opts.static is False else 0
c.swapping_prob = None
c.half_static = True if opts.static is False else False
c.truncation_psi = opts.truncation_psi
c.render_pretrain = opts.render_pretrain
c.gan_model_base_dir = opts.gan_model_base_dir
c.vae_pretrained = opts.vae_pretrained
c.D_opt_kwargs.lr = opts.dlr
c.D_patch_opt_kwargs.lr = opts.dlr
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = opts.snap
c.network_snapshot_ticks = 100
# c.network_snapshot_ticks = opts.snap
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if c.batch_gpu < c.D_kwargs.epilogue_kwargs.mbstd_group_size:
raise click.ClickException('--batch-gpu cannot be smaller than --mbstd')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException(
'\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
# Base configuration.
c.ema_kimg = c.batch_size * 10 / 32
c.G_kwargs.class_name = opts.g_module
c.D_kwargs.class_name = opts.d_module
if opts.patch_scale < 1:
c.D_patch_kwargs.class_name = opts.d_patch_module
c.G_kwargs.fused_modconv_default = 'inference_only' # Speed up training by using regular convolutions instead of grouped convolutions.
c.loss_kwargs.filter_mode = 'antialiased' # Filter mode for raw images ['antialiased', 'none', float [0-1]]
c.D_kwargs.disc_c_noise = opts.disc_c_noise # Regularization for discriminator pose conditioning
c.G_kwargs.flame_full = opts.g_flame_full
c.G_kwargs.has_superresolution = opts.g_has_superresolution
c.G_kwargs.has_background = opts.g_has_background
c.G_kwargs.num_blocks_neutral = opts.g_num_blocks_neutral
c.G_kwargs.num_blocks_motion = opts.g_num_blocks_motion
c.G_kwargs.motion_map_layers = opts.g_motion_map_layers
# c.D_kwargs.has_superresolution = opts.d_has_superresolution
# c.D_kwargs.has_uv = opts.d_has_uv
# c.D_kwargs.has_seg = opts.d_has_seg
# c.D_patch_kwargs.has_superresolution = False
# c.D_patch_kwargs.has_uv = False
# c.D_patch_kwargs.has_seg = False
if c.training_set_kwargs.resolution == 512:
sr_module = 'models.stylegan.superresolution.SuperresolutionHybrid8XDC'
elif c.training_set_kwargs.resolution == 256:
sr_module = 'models.stylegan.superresolution.SuperresolutionHybrid4X'
elif c.training_set_kwargs.resolution == 128:
sr_module = 'models.stylegan.superresolution.SuperresolutionHybrid2X'
elif c.training_set_kwargs.resolution == 64:
sr_module = None
else:
assert False, f"Unsupported resolution {c.training_set_kwargs.resolution}; make a new superresolution module"
if opts.sr_module != None:
sr_module = opts.sr_module
rendering_options = {
'image_resolution': c.training_set_kwargs.resolution,
'disparity_space_sampling': False,
'clamp_mode': 'softplus',
'superresolution_module': sr_module,
'c_gen_conditioning_zero': not opts.gen_pose_cond,
# if true, fill generator pose conditioning label with dummy zero vector
'gpc_reg_prob': opts.gpc_reg_prob if opts.gen_pose_cond else None,
'c_scale': opts.c_scale, # mutliplier for generator pose conditioning label
'superresolution_noise_mode': opts.sr_noise_mode,
# [random or none], whether to inject pixel noise into super-resolution layers
'density_reg': opts.density_reg, # strength of density regularization
'density_reg_p_dist': opts.density_reg_p_dist,
# distance at which to sample perturbed points for density regularization
'reg_type': opts.reg_type, # for experimenting with variations on density regularization
'decoder_lr_mul': opts.decoder_lr_mul, # learning rate multiplier for decoder
'sr_antialias': True,
'gen_exp_cond': opts.gen_exp_cond,
'gen_lms_cond': opts.gen_lms_cond,
'gen_mask_cond': opts.gen_mask_cond
}
rendering_options.update({
'depth_resolution': 48, # number of uniform samples to take per ray.
'depth_resolution_importance': 48, # number of importance samples to take per ray.
'ray_start': 2.25, # near point along each ray to start taking samples.
'ray_end': 3.3, # far point along each ray to stop taking samples.
'box_warp': 1,
# the side-length of the bounding box spanned by the tri-planes; box_warp=1 means [-0.5, -0.5, -0.5] -> [0.5, 0.5, 0.5].
'avg_camera_radius': 2.7, # used only in the visualizer to specify camera orbit radius.
'avg_camera_pivot': [0, 0, 0.2], # used only in the visualizer to control center of camera rotation.
})
if opts.density_reg > 0:
c.G_reg_interval = opts.density_reg_every
c.G_kwargs.rendering_kwargs = rendering_options
c.G_kwargs.num_fp16_res = 0
c.loss_kwargs.blur_init_sigma = 0 # Blur the images seen by the discriminator.
c.loss_kwargs.blur_patch_seg = opts.blur_patch_seg
c.loss_kwargs.blur_fade_kimg = c.batch_size * opts.blur_fade_kimg / 32 # Fade out the blur during the first N kimg.
c.loss_kwargs.discrimination_kimg = 1000 # where to add adversarial loss
c.loss_kwargs.gmain = 0.01 # check what is this
c.loss_kwargs.gpc_reg_prob = opts.gpc_reg_prob if opts.gen_pose_cond else None
c.loss_kwargs.gpc_reg_fade_kimg = opts.gpc_reg_fade_kimg
c.loss_kwargs.dual_discrimination = True
c.loss_kwargs.neural_rendering_resolution_initial = opts.neural_rendering_resolution_initial
c.loss_kwargs.neural_rendering_resolution_final = opts.neural_rendering_resolution_final
c.loss_kwargs.neural_rendering_resolution_fade_kimg = opts.neural_rendering_resolution_fade_kimg
c.G_kwargs.sr_num_fp16_res = opts.sr_num_fp16_res
c.loss_kwargs.patch_scale = opts.patch_scale
c.loss_kwargs.patch_gan = opts.patch_gan
c.G_kwargs.add_block = opts.patch_scale < 1
c.G_kwargs.masked_sampling = opts.masked_sampling
c.loss_kwargs.masked_sampling = opts.masked_sampling
c.loss_kwargs.perturb_params = True
c.G_kwargs.sr_kwargs = dnnlib.EasyDict(channel_base=opts.cbase, channel_max=opts.cmax,
fused_modconv_default='inference_only')
c.loss_kwargs.style_mixing_prob = opts.style_mixing_prob
# Augmentation.
if opts.aug != 'noaug':
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1,
scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1,
hue=1, saturation=1)
if opts.aug == 'ada':
c.ada_target = opts.target
if opts.aug == 'fixed':
c.augment_p = opts.p
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
c.ada_kimg = 100 # Make ADA react faster at the beginning.
c.ema_rampup = None # Disable EMA rampup.
if not opts.resume_blur:
c.loss_kwargs.blur_init_sigma = 0 # Disable blur rampup.
c.loss_kwargs.gpc_reg_fade_kimg = 0 # Disable swapping rampup
if opts.resume_syn is not None:
c.resume_pkl_G_syn = opts.resume_syn
# Performance-related toggles.
# if opts.fp32:
# c.G_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0
# c.G_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None
c.G_kwargs.num_fp16_res = opts.g_num_fp16_res
c.G_kwargs.conv_clamp = 256 if opts.g_num_fp16_res > 0 else None
c.D_kwargs.num_fp16_res = opts.d_num_fp16_res
c.D_kwargs.conv_clamp = 256 if opts.d_num_fp16_res > 0 else None
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
desc = f'{opts.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
# ----------------------------------------------------------------------------
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------
|