Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,646 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
from __future__ import absolute_import
import torch
from torch import nn
from .encoder_id import Backbone
import torch.nn.functional as F
class IDLoss(nn.Module):
def __init__(self, model_path, num_scales=1):
super(IDLoss, self).__init__()
print('Loading ResNet ArcFace')
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
self.facenet.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
self.facenet.eval()
self.num_scales = num_scales
for module in [self.facenet, self.face_pool]:
for param in module.parameters():
param.requires_grad = False
def extract_feats(self, x):
x = x[:, :, 35:223, 32:220] # Crop interesting region
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(self, x, y):
n_samples = x.shape[0]
loss = 0.0
for _scale in range(self.num_scales):
x_feats = self.extract_feats(x)
y_feats = self.extract_feats(y)
for i in range(n_samples):
diff_target = y_feats[i].dot(x_feats[i])
loss += 1 - diff_target
if _scale != self.num_scales - 1:
x = F.interpolate(x, mode='bilinear', scale_factor=0.5, align_corners=False,
recompute_scale_factor=True)
y = F.interpolate(y, mode='bilinear', scale_factor=0.5, align_corners=False,
recompute_scale_factor=True)
return loss / n_samples
def psp_forward(self, y_hat, y, x):
n_samples = x.shape[0]
x_feats = self.extract_feats(x)
y_feats = self.extract_feats(y) # Otherwise use the feature from there
y_hat_feats = self.extract_feats(y_hat)
y_feats = y_feats.detach()
loss = 0
sim_improvement = 0
id_logs = []
count = 0
for i in range(n_samples):
diff_target = y_hat_feats[i].dot(y_feats[i])
diff_input = y_hat_feats[i].dot(x_feats[i])
diff_views = y_feats[i].dot(x_feats[i])
id_logs.append({'diff_target': float(diff_target),
'diff_input': float(diff_input),
'diff_views': float(diff_views)})
loss += 1 - diff_target
id_diff = float(diff_target) - float(diff_views)
sim_improvement += id_diff
count += 1
return loss / count, sim_improvement / count, id_logs |