Spaces:
Running
on
Zero
Running
on
Zero
File size: 52,405 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 |
# Dataloader for training Portrait4D, modified from EG3D: https://github.com/NVlabs/eg3d
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Streaming images and labels from datasets created with dataset_tool.py."""
import os
import sys
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import dnnlib
from training.dataloader.protocols import datum_portrait_genhead_pb2 as datum_pb2_genhead
from training.dataloader.protocols import datum_portrait_genhead_static_pb2 as datum_pb2_genhead_static
from training.dataloader.protocols import datum_portrait_genhead_new_pb2 as datum_pb2_genhead_new
from training.dataloader.protocols import datum_portrait_genhead_static_new_pb2 as datum_pb2_genhead_static_new
from training.dataloader.protocols import datum_portrait_vfhq_pb2 as datum_pb2_vfhq
from training.dataloader.protocols import datum_portrait_ffhq_pb2 as datum_pb2_ffhq
import lmdb
import cv2
from scipy.spatial.transform import Rotation as R
# try:
# import pyspng
# except ImportError:
pyspng = None
#----------------------------------------------------------------------------
class Dataset(torch.utils.data.Dataset):
def __init__(self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
use_labels = False, # Enable conditioning labels? False = label dimension is zero.
xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed = 0, # Random seed to use when applying max_size.
):
self._name = name
self._raw_shape = list(raw_shape)
self._use_labels = use_labels
self._raw_labels = None
self._label_shape = None
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels() if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert self._raw_labels.ndim == 1
assert np.all(self._raw_labels >= 0)
self._raw_labels_std = self._raw_labels.std(0)
return self._raw_labels
def close(self): # to be overridden by subclass
pass
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_labels(self): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
image = self._load_raw_image(self._raw_idx[idx])
assert isinstance(image, np.ndarray)
assert list(image.shape) == self.image_shape
assert image.dtype == np.uint8
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
return image.copy(), self.get_label(idx)
def get_label(self, idx):
label = self._get_raw_labels()[self._raw_idx[idx]]
if label.dtype == np.int64:
onehot = np.zeros(self.label_shape, dtype=np.float32)
onehot[label] = 1
label = onehot
return label.copy()
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = (int(self._xflip[idx]) != 0)
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
return d
def get_label_std(self):
return self._raw_labels_std
@property
def name(self):
return self._name
@property
def image_shape(self):
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._get_raw_labels()
if raw_labels.dtype == np.int64:
self._label_shape = [int(np.max(raw_labels)) + 1]
else:
self._label_shape = raw_labels.shape[1:]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return self._get_raw_labels().dtype == np.int64
#----------------------------------------------------------------------------
# Dataloader for real video set
class OneShotReconSegLmdbFolderDataset(Dataset):
def __init__(self,
path, # Path to datalist.
resolution = None, # Ensure specific resolution, None = highest available.
data_type = "vfhq",# Deprecated
static = False, # if True, only select multiview static frames instead of frames with different motions
use_flame_mot = False, # whether or not to use FLAME parameters as motion embedding
max_num = None,
rescale_camera = False, # Rescale camera extrinsics and intrinscs to align with an older version of camera labels
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = path
print(self._path)
self._resolution = resolution
self._zipfile = None
self._data_type = data_type
self.static = static
self.use_flame_mot = use_flame_mot
self.rescale_camera = rescale_camera
# initialize lmdb
if os.path.isdir(self._path):
self.db = None
self.txn = None
self.num = None
self.datum = None
else:
raise IOError('Path must point to a directory or zip')
img_size = int(self._path.split("/")[-2].split("_")[-2])
num = int(self._path.split("/")[-2].split("_")[-1])
img_shape = [3, img_size, img_size]
raw_shape = [num] + img_shape
if max_num is not None:
raw_shape = [max_num] + img_shape
if resolution is None:
self._resolution = raw_shape[2]
name = os.path.splitext(os.path.basename(self._path))[0]
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
def open_lmdb(self):
self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
self.txn = self.db.begin()
self.num = int(self.txn.get('num_samples'.encode()))
self.datum = datum_pb2_vfhq.Datum_vfhq()
def get_details(self, idx):
return None
def get_label_std(self):
return 0
@property
def resolution(self):
return self._resolution
@property
def label_shape(self):
if self._label_shape is None:
raw_labels, _ = self._load_raw_labels(0,[0,0])
self._label_shape = raw_labels.shape
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_image(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
images = np.fromstring(self.datum.images, dtype=np.uint8).reshape(self.datum.num,-1)
frame_idx = np.random.randint(self.datum.num,size=2)
source_image = images[frame_idx[0]]
driving_image = images[frame_idx[1]]
source_image = source_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
driving_image = driving_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
if source_image.ndim == 2:
source_image = source_image[:, :, np.newaxis] # HW => HWC
if driving_image.ndim == 2:
driving_image = driving_image[:, :, np.newaxis] # HW => HWC
source_image = source_image.transpose(2, 0, 1) # HWC => CHW
driving_image = driving_image.transpose(2, 0, 1) # HWC => CHW
return source_image, driving_image, frame_idx
def _load_raw_seg(self, raw_idx, frame_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
seg = np.fromstring(self.datum.segs, dtype=np.uint8).reshape(self.datum.num,-1)
source_seg = seg[frame_idx[0]]
driving_seg = seg[frame_idx[1]]
source_seg = source_seg.reshape(self.datum.height,self.datum.width,-1)
driving_seg = driving_seg.reshape(self.datum.height,self.datum.width,-1)
if source_seg.ndim == 2:
source_seg = source_seg[:, :, np.newaxis] # HW => HWC
if driving_seg.ndim == 2:
driving_seg = driving_seg[:, :, np.newaxis] # HW => HWC
source_seg = source_seg.transpose(2, 0, 1) # HWC => CHW
driving_seg = driving_seg.transpose(2, 0, 1) # HWC => CHW
if source_seg.shape[0] == 1:
source_seg = np.tile(source_seg, (3, 1, 1))
if driving_seg.shape[0] == 1:
driving_seg = np.tile(driving_seg, (3, 1, 1))
return source_seg, driving_seg
def _load_raw_labels(self, raw_idx, frame_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
labels = np.fromstring(self.datum.labels, dtype=np.float32).reshape(self.datum.num,-1)
# Use average yaw and roll angles across all frames in a video clip as the camera pose to rectify extracted head pose
head_poses = labels[:,425:428]
compose_rot = R.from_rotvec(head_poses)
compose_euler = compose_rot.as_euler('xyz')
compose_euler_mean = np.mean(compose_euler,axis=0,keepdims=True)
cam_euler = np.stack([np.zeros_like(compose_euler_mean[...,0]), compose_euler_mean[...,1], compose_euler_mean[...,2]], axis=-1)
cam_rot = R.from_euler('xyz', cam_euler).as_matrix()
cam_rot_inverse = np.transpose(cam_rot,[0,2,1])
head_rot_rectified = np.matmul(cam_rot_inverse,compose_rot.as_matrix())
head_poses = R.from_matrix(head_rot_rectified).as_rotvec()
labels[:,425:428] = head_poses
source_labels = labels[frame_idx[0]]
driving_labels = labels[frame_idx[1]]
if self.rescale_camera:
if frame_idx[0] == frame_idx[1]:
intrinsics = source_labels[16:25].reshape(3,3)
# normalize intrinsics
if self._resolution != intrinsics[0,2]*2:
intrinsics[:2,:] *= (0.5*self._resolution/intrinsics[0,2])
intrinsics[0, 0] /= self._resolution
intrinsics[1, 1] /= self._resolution
intrinsics[0, 2] /= self._resolution
intrinsics[1, 2] /= self._resolution
# rescale extrinsics
extrinsics = source_labels[:16].reshape(4,4) # Our face scale is around 0.1~0.2. Multiply by 3 to match the scale of EG3D
extrinsics[:3,3] *= 3
else:
for labels in [source_labels, driving_labels]:
intrinsics = labels[16:25].reshape(3,3)
if self._resolution != intrinsics[0,2]*2:
intrinsics[:2,:] *= (0.5*self._resolution/intrinsics[0,2])
intrinsics[0, 0] /= self._resolution
intrinsics[1, 1] /= self._resolution
intrinsics[0, 2] /= self._resolution
intrinsics[1, 2] /= self._resolution
extrinsics = labels[:16].reshape(4,4)
extrinsics[:3,3] *= 3
return source_labels, driving_labels
def _load_raw_motions(self, raw_idx, frame_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
motions = np.fromstring(self.datum.mots, dtype=np.float32).reshape(self.datum.num,-1)
motions = motions[:,:548]
source_motions = motions[frame_idx[0]]
driving_motions = motions[frame_idx[1]]
return source_motions, driving_motions
def get_label(self, raw_labels):
label = raw_labels[:25]
return label.copy()
def get_shape_param(self, raw_labels):
label = raw_labels[25:325]
return label.copy()
def get_exp_param(self, raw_labels):
label = raw_labels[325:425]
return label.copy()
def get_exp_param_w_jaw_pose(self, raw_labels):
label = np.concatenate([raw_labels[325:425],raw_labels[428:431]],axis=0)
return label.copy()
def get_pose_param(self, raw_labels):
label = raw_labels[425:431]
return label.copy()
def get_eye_pose_param(self, raw_labels):
label = raw_labels[431:437]
return label.copy()
def get_label_all(self,raw_labels):
c = self.get_label(raw_labels)
shape_param = self.get_shape_param(raw_labels)
exp_param = self.get_exp_param(raw_labels)
pose_param = self.get_pose_param(raw_labels)
eye_pose_param = self.get_eye_pose_param(raw_labels)
return c, shape_param, exp_param, pose_param, eye_pose_param
def __getitem__(self, idx):
source_image, driving_image, frame_idx = self._load_raw_image(self._raw_idx[idx])
source_seg, driving_seg = self._load_raw_seg(self._raw_idx[idx], frame_idx)
source_labels, driving_labels = self._load_raw_labels(self._raw_idx[idx], frame_idx)
source_motions, driving_motions = self._load_raw_motions(self._raw_idx[idx], frame_idx)
assert isinstance(source_image, np.ndarray)
assert isinstance(driving_image, np.ndarray)
assert isinstance(source_seg, np.ndarray)
assert isinstance(driving_seg, np.ndarray)
assert list(source_image.shape) == self.image_shape
assert source_seg.shape[1] == self.image_shape[1] and source_seg.shape[2] == self.image_shape[2]
assert source_image.dtype == np.uint8
# use flame parameters as motion embedding if use_flame_mot is true
if self.use_flame_mot:
source_motions = np.concatenate([self.get_exp_param_w_jaw_pose(source_labels),self.get_eye_pose_param(source_labels)],axis=0)
driving_motions = np.concatenate([self.get_exp_param_w_jaw_pose(driving_labels),self.get_eye_pose_param(driving_labels)],axis=0)
return source_image.copy(), driving_image.copy(), driving_image.copy(), driving_seg.copy(), np.zeros([]), np.zeros([]), np.zeros([]), np.zeros([]), np.zeros([]), self.get_label(driving_labels), self.get_shape_param(source_labels), self.get_exp_param(driving_labels), self.get_pose_param(driving_labels), self.get_eye_pose_param(driving_labels), source_motions.copy(), driving_motions.copy()
#----------------------------------------------------------------------------
# Dataloader for real image set
class OneShotReconSegLmdbFolderDataset_Static(OneShotReconSegLmdbFolderDataset):
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._load_raw_labels(0)
self._label_shape = raw_labels.shape
return list(self._label_shape)
def open_lmdb(self):
self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
self.txn = self.db.begin()
self.num = int(self.txn.get('num_samples'.encode()))
self.datum = datum_pb2_ffhq.Datum_ffhq()
def _load_raw_image(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
image = np.fromstring(self.datum.images, dtype=np.uint8)
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
image = image[:, :, [2, 1, 0]] # bgr -> rgb
image = image.reshape(self.datum.height,self.datum.width,self.datum.channels)
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _load_raw_seg(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
seg = np.fromstring(self.datum.segs, dtype=np.uint8)
seg = cv2.imdecode(seg, cv2.IMREAD_COLOR)
if seg.ndim == 2:
seg = seg[:, :, np.newaxis] # HW => HWC
seg = seg.transpose(2, 0, 1) # HWC => CHW
if seg.shape[0] == 1:
seg = np.tile(seg, (3, 1, 1))
return seg
def _load_raw_labels(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
labels = np.fromstring(self.datum.labels, dtype=np.float32).reshape(-1)
labels[425:428] = 0 # set head pose to zero and use camera pose instead
if self.rescale_camera:
intrinsics = labels[16:25].reshape(3,3)
# normalize intrinsics
if self._resolution != intrinsics[0,2]*2:
intrinsics[:2,:] *= (0.5*self._resolution/intrinsics[0,2])
intrinsics[0, 0] /= self._resolution
intrinsics[1, 1] /= self._resolution
intrinsics[0, 2] /= self._resolution
intrinsics[1, 2] /= self._resolution
# rescale extrinsics
extrinsics = labels[:16].reshape(4,4) # Our face scale is around 0.1~0.2. Multiply by 3 to match the scale of EG3D
extrinsics[:3,3] *= 3
return labels
def _load_raw_motions(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
motions = np.fromstring(self.datum.mots, dtype=np.float32).reshape(-1)
motions = motions[:548]
return motions
def __getitem__(self, idx):
image = self._load_raw_image(self._raw_idx[idx])
seg = self._load_raw_seg(self._raw_idx[idx])
labels = self._load_raw_labels(self._raw_idx[idx])
motions = self._load_raw_motions(self._raw_idx[idx])
assert isinstance(image, np.ndarray)
assert isinstance(seg, np.ndarray)
assert list(image.shape) == self.image_shape
assert seg.shape[1] == self.image_shape[1] and seg.shape[2] == self.image_shape[2]
assert image.dtype == np.uint8
return image.copy(), image.copy(), image.copy(), seg.copy(), np.zeros([]), np.zeros([]), np.zeros([]), np.zeros([]), np.zeros([]), self.get_label(labels), self.get_shape_param(labels), self.get_exp_param(labels), self.get_pose_param(labels), self.get_eye_pose_param(labels), motions.copy(), motions.copy()
#-----------------------------------------------------------------------------
# Dataloader for GenHead generated 4D data (base version)
class GenHeadReconSegLmdbFolderDataset(OneShotReconSegLmdbFolderDataset):
@property
def label_shape(self):
if self._label_shape is None:
raw_labels, _, _ = self._load_raw_labels(0,[0,0],[0,0,0])
self._label_shape = raw_labels.shape
return list(self._label_shape)
def _load_raw_image(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
images = np.fromstring(self.datum.images, dtype=np.uint8).reshape(self.datum.num//5,5,-1)
frame_idx = np.random.randint(self.datum.num//5,size=2)
# use same motion for source and driving if static is true
if self.static:
frame_idx[1] = frame_idx[0]
view_idx = np.random.randint(5,size=3)
source_image = images[frame_idx[0],view_idx[0]]
driving_image = images[frame_idx[1],view_idx[1]]
recon_image = images[frame_idx[1],view_idx[2]]
source_image = source_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
driving_image = driving_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
recon_image = recon_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
if source_image.ndim == 2:
source_image = source_image[:, :, np.newaxis] # HW => HWC
if driving_image.ndim == 2:
driving_image = driving_image[:, :, np.newaxis] # HW => HWC
if recon_image.ndim == 2:
recon_image = recon_image[:, :, np.newaxis] # HW => HWC
source_image = source_image.transpose(2, 0, 1) # HWC => CHW
driving_image = driving_image.transpose(2, 0, 1) # HWC => CHW
recon_image = recon_image.transpose(2, 0, 1) # HWC => CHW
return source_image, driving_image, recon_image, frame_idx, view_idx
def _load_raw_seg(self, raw_idx, frame_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
seg = np.fromstring(self.datum.segs, dtype=np.uint8).reshape(self.datum.num//5,5,-1)
source_seg = seg[frame_idx[0],view_idx[0]]
driving_seg = seg[frame_idx[1],view_idx[1]]
recon_seg = seg[frame_idx[1],view_idx[2]]
source_seg = source_seg.reshape(self.datum.height,self.datum.width,-1)
driving_seg = driving_seg.reshape(self.datum.height,self.datum.width,-1)
recon_seg = recon_seg.reshape(self.datum.height,self.datum.width,-1)
if source_seg.ndim == 2:
source_seg = source_seg[:, :, np.newaxis] # HW => HWC
if driving_seg.ndim == 2:
driving_seg = driving_seg[:, :, np.newaxis] # HW => HWC
if recon_seg.ndim == 2:
recon_seg = recon_seg[:, :, np.newaxis] # HW => HWC
source_seg = source_seg.transpose(2, 0, 1) # HWC => CHW
driving_seg = driving_seg.transpose(2, 0, 1) # HWC => CHW
recon_seg = recon_seg.transpose(2, 0, 1) # HWC => CHW
if source_seg.shape[0] == 1:
source_seg = np.tile(source_seg, (3, 1, 1))
if driving_seg.shape[0] == 1:
driving_seg = np.tile(driving_seg, (3, 1, 1))
if recon_seg.shape[0] == 1:
recon_seg = np.tile(recon_seg, (3, 1, 1))
return source_seg, driving_seg, recon_seg
def _load_raw_labels(self, raw_idx, frame_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
labels = np.fromstring(self.datum.labels, dtype=np.float32).reshape(self.datum.num//5,5,-1)
source_labels = labels[frame_idx[0], view_idx[0]]
driving_labels = labels[frame_idx[1], view_idx[1]]
recon_labels = labels[frame_idx[1], view_idx[2]]
return source_labels, driving_labels, recon_labels
def _load_raw_motions(self, raw_idx, frame_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
motions = np.fromstring(self.datum.mots, dtype=np.float32).reshape(self.datum.num//5,5,-1)
motions = motions[...,:548]
source_motions = motions[frame_idx[0], view_idx[0]]
driving_motions = motions[frame_idx[1], view_idx[1]]
recon_motios = motions[frame_idx[1], view_idx[2]]
return source_motions, driving_motions, recon_motios
def __getitem__(self, idx):
source_image, driving_image, recon_image, frame_idx, view_idx = self._load_raw_image(self._raw_idx[idx])
source_seg, driving_seg, recon_seg = self._load_raw_seg(self._raw_idx[idx], frame_idx, view_idx)
source_labels, driving_labels, recon_labels = self._load_raw_labels(self._raw_idx[idx], frame_idx, view_idx)
source_motions, driving_motions, recon_motions = self._load_raw_motions(self._raw_idx[idx], frame_idx, view_idx)
assert isinstance(source_image, np.ndarray)
assert isinstance(driving_image, np.ndarray)
assert isinstance(recon_image, np.ndarray)
assert isinstance(source_seg, np.ndarray)
assert isinstance(driving_seg, np.ndarray)
assert isinstance(recon_seg, np.ndarray)
assert list(source_image.shape) == self.image_shape
assert source_seg.shape[1] == self.image_shape[1] and source_seg.shape[2] == self.image_shape[2]
assert source_image.dtype == np.uint8
return source_image.copy(), driving_image.copy(), recon_image.copy(), recon_seg.copy(), self.get_label(recon_labels), self.get_shape_param(source_labels), self.get_exp_param(driving_labels), self.get_pose_param(driving_labels), self.get_eye_pose_param(driving_labels), driving_motions.copy()
#-----------------------------------------------------------------------------
# Dataloader for GenHead generated 4D data (include depth, feature maps, and triplane features)
class GenHeadReconSegLmdbFolderDatasetV2(GenHeadReconSegLmdbFolderDataset):
def open_lmdb(self):
self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
self.txn = self.db.begin()
self.num = int(self.txn.get('num_samples'.encode()))
self.datum = datum_pb2_genhead.Datum()
def _load_raw_depth(self, raw_idx, frame_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
depth = np.fromstring(self.datum.depths, dtype=np.float16).reshape(self.datum.num//5,5,-1)
source_depth = depth[frame_idx[0],view_idx[0]]
driving_depth = depth[frame_idx[1],view_idx[1]]
recon_depth = depth[frame_idx[1],view_idx[2]]
source_depth = source_depth.reshape(64,64,-1)
driving_depth = driving_depth.reshape(64,64,-1)
recon_depth = recon_depth.reshape(64,64,-1)
source_depth = source_depth.transpose(2, 0, 1) # HWC => CHW
driving_depth = driving_depth.transpose(2, 0, 1) # HWC => CHW
recon_depth = recon_depth.transpose(2, 0, 1) # HWC => CHW
return source_depth, driving_depth, recon_depth
def _load_raw_feature(self, raw_idx, frame_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
feature = np.fromstring(self.datum.features, dtype=np.float16).reshape(self.datum.num//5,5,-1)
source_feature = feature[frame_idx[0],view_idx[0]]
driving_feature = feature[frame_idx[1],view_idx[1]]
recon_feature = feature[frame_idx[1],view_idx[2]]
source_feature = source_feature.reshape(64,64,-1)
driving_feature = driving_feature.reshape(64,64,-1)
recon_feature = recon_feature.reshape(64,64,-1)
source_feature = source_feature.transpose(2, 0, 1) # HWC => CHW
driving_feature = driving_feature.transpose(2, 0, 1) # HWC => CHW
recon_feature = recon_feature.transpose(2, 0, 1) # HWC => CHW
return source_feature, driving_feature, recon_feature
def _load_raw_triplane(self, raw_idx, frame_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
triplane = np.fromstring(self.datum.triplanes, dtype=np.float16).reshape(self.datum.num//5,-1)
source_triplane = triplane[frame_idx[0]]
driving_triplane = triplane[frame_idx[1]]
recon_triplane = triplane[frame_idx[1]]
source_triplane = source_triplane.reshape(-1,35) # [N,3+32]
driving_triplane = driving_triplane.reshape(-1,35)
recon_triplane = recon_triplane.reshape(-1,35)
return source_triplane, driving_triplane, recon_triplane
def __getitem__(self, idx):
source_image, driving_image, recon_image, frame_idx, view_idx = self._load_raw_image(self._raw_idx[idx])
source_seg, driving_seg, recon_seg = self._load_raw_seg(self._raw_idx[idx], frame_idx, view_idx)
source_depth, driving_depth, recon_depth = self._load_raw_depth(self._raw_idx[idx], frame_idx, view_idx)
source_feature, driving_feature, recon_feature = self._load_raw_feature(self._raw_idx[idx], frame_idx, view_idx)
source_labels, driving_labels, recon_labels = self._load_raw_labels(self._raw_idx[idx], frame_idx, view_idx)
source_motions, driving_motions, recon_motions = self._load_raw_motions(self._raw_idx[idx], frame_idx, view_idx)
source_triplane, driving_triplane, recon_triplane = self._load_raw_triplane(self._raw_idx[idx], frame_idx)
assert isinstance(source_image, np.ndarray)
assert isinstance(driving_image, np.ndarray)
assert isinstance(recon_image, np.ndarray)
assert isinstance(source_seg, np.ndarray)
assert isinstance(driving_seg, np.ndarray)
assert isinstance(recon_seg, np.ndarray)
assert list(source_image.shape) == self.image_shape
assert source_seg.shape[1] == self.image_shape[1] and source_seg.shape[2] == self.image_shape[2]
assert source_image.dtype == np.uint8
return source_image.copy(), driving_image.copy(), recon_image.copy(), recon_seg.copy(), recon_depth.copy(), recon_feature.copy(), recon_triplane.copy(), self.get_label(recon_labels), self.get_shape_param(source_labels), self.get_exp_param(driving_labels), self.get_pose_param(driving_labels), self.get_eye_pose_param(driving_labels), source_motions.copy(), driving_motions.copy()
#----------------------------------------------------------------------------
# Dataloader for GenHead generated static multiview data (include depth, feature maps, and triplane features)
class GenHeadReconSegLmdbFolderDatasetV2_Static(OneShotReconSegLmdbFolderDataset):
@property
def label_shape(self):
if self._label_shape is None:
raw_labels, _, _ = self._load_raw_labels(0,[0,0,0])
self._label_shape = raw_labels.shape
return list(self._label_shape)
def open_lmdb(self):
self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
self.txn = self.db.begin()
self.num = int(self.txn.get('num_samples'.encode()))
self.datum = datum_pb2_genhead_static.Datum_static()
def _load_raw_image(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
images = np.fromstring(self.datum.images, dtype=np.uint8).reshape(self.datum.num,-1)
view_idx = np.random.randint(self.datum.num,size=3)
source_image = images[view_idx[0]]
driving_image = images[view_idx[1]]
recon_image = images[view_idx[2]]
source_image = source_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
driving_image = driving_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
recon_image = recon_image.reshape(self.datum.height,self.datum.width,self.datum.channels)
if source_image.ndim == 2:
source_image = source_image[:, :, np.newaxis] # HW => HWC
if driving_image.ndim == 2:
driving_image = driving_image[:, :, np.newaxis] # HW => HWC
if recon_image.ndim == 2:
recon_image = recon_image[:, :, np.newaxis] # HW => HWC
source_image = source_image.transpose(2, 0, 1) # HWC => CHW
driving_image = driving_image.transpose(2, 0, 1) # HWC => CHW
recon_image = recon_image.transpose(2, 0, 1) # HWC => CHW
return source_image, driving_image, recon_image, view_idx
def _load_raw_seg(self, raw_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
seg = np.fromstring(self.datum.segs, dtype=np.uint8).reshape(self.datum.num,-1)
source_seg = seg[view_idx[0]]
driving_seg = seg[view_idx[1]]
recon_seg = seg[view_idx[2]]
source_seg = source_seg.reshape(self.datum.height,self.datum.width,-1)
driving_seg = driving_seg.reshape(self.datum.height,self.datum.width,-1)
recon_seg = recon_seg.reshape(self.datum.height,self.datum.width,-1)
if source_seg.ndim == 2:
source_seg = source_seg[:, :, np.newaxis] # HW => HWC
if driving_seg.ndim == 2:
driving_seg = driving_seg[:, :, np.newaxis] # HW => HWC
if recon_seg.ndim == 2:
recon_seg = recon_seg[:, :, np.newaxis] # HW => HWC
source_seg = source_seg.transpose(2, 0, 1) # HWC => CHW
driving_seg = driving_seg.transpose(2, 0, 1) # HWC => CHW
recon_seg = recon_seg.transpose(2, 0, 1) # HWC => CHW
if source_seg.shape[0] == 1:
source_seg = np.tile(source_seg, (3, 1, 1))
if driving_seg.shape[0] == 1:
driving_seg = np.tile(driving_seg, (3, 1, 1))
if recon_seg.shape[0] == 1:
recon_seg = np.tile(recon_seg, (3, 1, 1))
return source_seg, driving_seg, recon_seg
def _load_raw_labels(self, raw_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
labels = np.fromstring(self.datum.labels, dtype=np.float32).reshape(self.datum.num,-1)
source_labels = labels[view_idx[0]]
driving_labels = labels[view_idx[1]]
recon_labels = labels[view_idx[2]]
return source_labels, driving_labels, recon_labels
def _load_raw_motions(self, raw_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
motions = np.fromstring(self.datum.mots, dtype=np.float32).reshape(self.datum.num,-1)
motions = motions[...,:548]
source_motions = motions[view_idx[0]]
driving_motions = motions[view_idx[1]]
recon_motios = motions[view_idx[2]]
return source_motions, driving_motions, recon_motios
def _load_raw_depth(self, raw_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
depth = np.fromstring(self.datum.depths, dtype=np.float16).reshape(self.datum.num,-1)
source_depth = depth[view_idx[0]]
driving_depth = depth[view_idx[1]]
recon_depth = depth[view_idx[2]]
source_depth = source_depth.reshape(64,64,-1)
driving_depth = driving_depth.reshape(64,64,-1)
recon_depth = recon_depth.reshape(64,64,-1)
source_depth = source_depth.transpose(2, 0, 1) # HWC => CHW
driving_depth = driving_depth.transpose(2, 0, 1) # HWC => CHW
recon_depth = recon_depth.transpose(2, 0, 1) # HWC => CHW
return source_depth, driving_depth, recon_depth
def _load_raw_feature(self, raw_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
feature = np.fromstring(self.datum.features, dtype=np.float16).reshape(self.datum.num,-1)
source_feature = feature[view_idx[0]]
driving_feature = feature[view_idx[1]]
recon_feature = feature[view_idx[2]]
source_feature = source_feature.reshape(64,64,-1)
driving_feature = driving_feature.reshape(64,64,-1)
recon_feature = recon_feature.reshape(64,64,-1)
source_feature = source_feature.transpose(2, 0, 1) # HWC => CHW
driving_feature = driving_feature.transpose(2, 0, 1) # HWC => CHW
recon_feature = recon_feature.transpose(2, 0, 1) # HWC => CHW
return source_feature, driving_feature, recon_feature
def _load_raw_triplane(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
triplane = np.fromstring(self.datum.triplanes, dtype=np.float16).reshape(-1)
source_triplane = triplane
driving_triplane = triplane
recon_triplane = triplane
source_triplane = source_triplane.reshape(-1,35) # [N,3+32]
driving_triplane = driving_triplane.reshape(-1,35)
recon_triplane = recon_triplane.reshape(-1,35)
return source_triplane, driving_triplane, recon_triplane
def __getitem__(self, idx):
source_image, driving_image, recon_image, view_idx = self._load_raw_image(self._raw_idx[idx])
source_seg, driving_seg, recon_seg = self._load_raw_seg(self._raw_idx[idx], view_idx)
source_depth, driving_depth, recon_depth = self._load_raw_depth(self._raw_idx[idx], view_idx)
source_feature, driving_feature, recon_feature = self._load_raw_feature(self._raw_idx[idx], view_idx)
source_labels, driving_labels, recon_labels = self._load_raw_labels(self._raw_idx[idx], view_idx)
source_motions, driving_motions, recon_motions = self._load_raw_motions(self._raw_idx[idx], view_idx)
source_triplane, driving_triplane, recon_triplane = self._load_raw_triplane(self._raw_idx[idx])
assert isinstance(source_image, np.ndarray)
assert isinstance(driving_image, np.ndarray)
assert isinstance(recon_image, np.ndarray)
assert isinstance(source_seg, np.ndarray)
assert isinstance(driving_seg, np.ndarray)
assert isinstance(recon_seg, np.ndarray)
assert list(source_image.shape) == self.image_shape
assert source_seg.shape[1] == self.image_shape[1] and source_seg.shape[2] == self.image_shape[2]
assert source_image.dtype == np.uint8
return source_image.copy(), driving_image.copy(), recon_image.copy(), recon_seg.copy(), recon_depth.copy(), recon_feature.copy(), recon_triplane.copy(), self.get_label(recon_labels), self.get_shape_param(source_labels), self.get_exp_param(driving_labels), self.get_pose_param(driving_labels), self.get_eye_pose_param(driving_labels), source_motions.copy(), driving_motions.copy()
#--------------------------------------------------------------------------------------------------------
# Dataloader for GenHead generated 4D data (include depth, feature maps, triplane features, background, and rendered segmentation)
class GenHeadReconSegLmdbFolderDatasetV2New(GenHeadReconSegLmdbFolderDatasetV2):
def __init__(self,
path, # Path to datalist.
resolution = None, # Ensure specific resolution, None = highest available.
data_type = "vfhq",# Deprecated
static = False, # if True, only select multiview static frames instead of frames with different motions
use_flame_mot = False, # whether or not to use FLAME parameters as motion embedding
**super_kwargs, # Additional arguments for the Dataset base class.
):
super().__init__(path=path, resolution=resolution, data_type=data_type, static=static, **super_kwargs)
self.use_flame_mot = use_flame_mot
def open_lmdb(self):
self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
self.txn = self.db.begin()
self.num = int(self.txn.get('num_samples'.encode()))
self.datum = datum_pb2_genhead_new.Datum_new()
def _load_raw_bg_feature(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
feature = np.fromstring(self.datum.bgs, dtype=np.float16)
recon_feature = feature
recon_feature = recon_feature.reshape(64,64,-1)
recon_feature = recon_feature.transpose(2, 0, 1) # HWC => CHW
return recon_feature
def _load_raw_seg_render(self, raw_idx, frame_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
seg = np.fromstring(self.datum.segs_render, dtype=np.uint8).reshape(self.datum.num//5,5,-1)
source_seg = seg[frame_idx[0],view_idx[0]]
driving_seg = seg[frame_idx[1],view_idx[1]]
recon_seg = seg[frame_idx[1],view_idx[2]]
source_seg = source_seg.reshape(64,64,-1)
driving_seg = driving_seg.reshape(64,64,-1)
recon_seg = recon_seg.reshape(64,64,-1)
if source_seg.ndim == 2:
source_seg = source_seg[:, :, np.newaxis] # HW => HWC
if driving_seg.ndim == 2:
driving_seg = driving_seg[:, :, np.newaxis] # HW => HWC
if recon_seg.ndim == 2:
recon_seg = recon_seg[:, :, np.newaxis] # HW => HWC
source_seg = source_seg.transpose(2, 0, 1) # HWC => CHW
driving_seg = driving_seg.transpose(2, 0, 1) # HWC => CHW
recon_seg = recon_seg.transpose(2, 0, 1) # HWC => CHW
if source_seg.shape[0] == 1:
source_seg = np.tile(source_seg, (3, 1, 1))
if driving_seg.shape[0] == 1:
driving_seg = np.tile(driving_seg, (3, 1, 1))
if recon_seg.shape[0] == 1:
recon_seg = np.tile(recon_seg, (3, 1, 1))
return source_seg, driving_seg, recon_seg
def __getitem__(self, idx):
source_image, driving_image, recon_image, frame_idx, view_idx = self._load_raw_image(self._raw_idx[idx])
source_seg, driving_seg, recon_seg = self._load_raw_seg(self._raw_idx[idx], frame_idx, view_idx)
source_seg_render, driving_seg_render, recon_seg_render = self._load_raw_seg_render(self._raw_idx[idx], frame_idx, view_idx)
source_depth, driving_depth, recon_depth = self._load_raw_depth(self._raw_idx[idx], frame_idx, view_idx)
source_feature, driving_feature, recon_feature = self._load_raw_feature(self._raw_idx[idx], frame_idx, view_idx)
recon_feature_bg = self._load_raw_bg_feature(self._raw_idx[idx])
source_labels, driving_labels, recon_labels = self._load_raw_labels(self._raw_idx[idx], frame_idx, view_idx)
source_motions, driving_motions, recon_motions = self._load_raw_motions(self._raw_idx[idx], frame_idx, view_idx)
source_triplane, driving_triplane, recon_triplane = self._load_raw_triplane(self._raw_idx[idx], frame_idx)
assert isinstance(source_image, np.ndarray)
assert isinstance(driving_image, np.ndarray)
assert isinstance(recon_image, np.ndarray)
assert isinstance(source_seg, np.ndarray)
assert isinstance(driving_seg, np.ndarray)
assert isinstance(recon_seg, np.ndarray)
assert isinstance(source_seg_render, np.ndarray)
assert isinstance(driving_seg_render, np.ndarray)
assert isinstance(source_seg_render, np.ndarray)
assert list(source_image.shape) == self.image_shape
assert source_seg.shape[1] == self.image_shape[1] and source_seg.shape[2] == self.image_shape[2]
assert source_image.dtype == np.uint8
# use flame parameters as motion embedding if use_flame_mot is true
if self.use_flame_mot:
source_motions = np.concatenate([self.get_exp_param_w_jaw_pose(source_labels),self.get_eye_pose_param(source_labels)],axis=0)
driving_motions = np.concatenate([self.get_exp_param_w_jaw_pose(driving_labels),self.get_eye_pose_param(driving_labels)],axis=0)
return source_image.copy(), driving_image.copy(), recon_image.copy(), recon_seg.copy(), recon_seg_render.copy(), recon_depth.copy(), recon_feature.copy(), recon_feature_bg.copy(), recon_triplane.copy(), self.get_label(recon_labels), self.get_shape_param(source_labels), self.get_exp_param(driving_labels), self.get_pose_param(driving_labels), self.get_eye_pose_param(driving_labels), source_motions.copy(), driving_motions.copy()
#--------------------------------------------------------------------------------------------------------
# Dataloader for GenHead generated static multiview data (include depth, feature maps, triplane features, background, and rendered segmentation)
class GenHeadReconSegLmdbFolderDatasetV2_StaticNew(GenHeadReconSegLmdbFolderDatasetV2_Static):
def __init__(self,
path, # Path to datalist.
resolution = None, # Ensure specific resolution, None = highest available.
data_type = "vfhq",# Deprecated
static = False, # if True, only select multiview static frames instead of frames with different motions
use_flame_mot = False, # whether or not to use FLAME parameters as motion embedding
**super_kwargs, # Additional arguments for the Dataset base class.
):
super().__init__(path=path, resolution=resolution, data_type=data_type, static=static, **super_kwargs)
self.use_flame_mot = use_flame_mot
def open_lmdb(self):
self.db = lmdb.open(self._path, map_size=1024 ** 4, readonly=True, lock=False)
self.txn = self.db.begin()
self.num = int(self.txn.get('num_samples'.encode()))
self.datum = datum_pb2_genhead_static_new.Datum_static_new()
def _load_raw_bg_feature(self, raw_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
feature = np.fromstring(self.datum.bgs, dtype=np.float16)
recon_feature = feature
recon_feature = recon_feature.reshape(64,64,-1)
recon_feature = recon_feature.transpose(2, 0, 1) # HWC => CHW
return recon_feature
def _load_raw_seg_render(self, raw_idx, view_idx):
if self.txn is None:
self.open_lmdb()
value = self.txn.get('{:0>8d}'.format(raw_idx).encode())
self.datum.ParseFromString(value)
seg = np.fromstring(self.datum.segs_render, dtype=np.uint8).reshape(self.datum.num,-1)
source_seg = seg[view_idx[0]]
driving_seg = seg[view_idx[1]]
recon_seg = seg[view_idx[2]]
source_seg = source_seg.reshape(64,64,-1)
driving_seg = driving_seg.reshape(64,64,-1)
recon_seg = recon_seg.reshape(64,64,-1)
if source_seg.ndim == 2:
source_seg = source_seg[:, :, np.newaxis] # HW => HWC
if driving_seg.ndim == 2:
driving_seg = driving_seg[:, :, np.newaxis] # HW => HWC
if recon_seg.ndim == 2:
recon_seg = recon_seg[:, :, np.newaxis] # HW => HWC
source_seg = source_seg.transpose(2, 0, 1) # HWC => CHW
driving_seg = driving_seg.transpose(2, 0, 1) # HWC => CHW
recon_seg = recon_seg.transpose(2, 0, 1) # HWC => CHW
if source_seg.shape[0] == 1:
source_seg = np.tile(source_seg, (3, 1, 1))
if driving_seg.shape[0] == 1:
driving_seg = np.tile(driving_seg, (3, 1, 1))
if recon_seg.shape[0] == 1:
recon_seg = np.tile(recon_seg, (3, 1, 1))
return source_seg, driving_seg, recon_seg
def __getitem__(self, idx):
source_image, driving_image, recon_image, view_idx = self._load_raw_image(self._raw_idx[idx])
source_seg, driving_seg, recon_seg = self._load_raw_seg(self._raw_idx[idx], view_idx)
source_seg_render, driving_seg_render, recon_seg_render = self._load_raw_seg_render(self._raw_idx[idx], view_idx)
source_depth, driving_depth, recon_depth = self._load_raw_depth(self._raw_idx[idx], view_idx)
source_feature, driving_feature, recon_feature = self._load_raw_feature(self._raw_idx[idx], view_idx)
recon_feature_bg = self._load_raw_bg_feature(self._raw_idx[idx])
source_labels, driving_labels, recon_labels = self._load_raw_labels(self._raw_idx[idx], view_idx)
source_motions, driving_motions, recon_motions = self._load_raw_motions(self._raw_idx[idx], view_idx)
source_triplane, driving_triplane, recon_triplane = self._load_raw_triplane(self._raw_idx[idx])
assert isinstance(source_image, np.ndarray)
assert isinstance(driving_image, np.ndarray)
assert isinstance(recon_image, np.ndarray)
assert isinstance(source_seg, np.ndarray)
assert isinstance(driving_seg, np.ndarray)
assert isinstance(recon_seg, np.ndarray)
assert isinstance(source_seg_render, np.ndarray)
assert isinstance(driving_seg_render, np.ndarray)
assert isinstance(source_seg_render, np.ndarray)
assert list(source_image.shape) == self.image_shape
assert source_seg.shape[1] == self.image_shape[1] and source_seg.shape[2] == self.image_shape[2]
assert source_image.dtype == np.uint8
# use flame parameters as motion embedding if use_flame_mot is true
if self.use_flame_mot:
source_motions = np.concatenate([self.get_exp_param_w_jaw_pose(source_labels),self.get_eye_pose_param(source_labels)],axis=0)
driving_motions = np.concatenate([self.get_exp_param_w_jaw_pose(driving_labels),self.get_eye_pose_param(driving_labels)],axis=0)
return source_image.copy(), driving_image.copy(), recon_image.copy(), recon_seg.copy(), recon_seg_render.copy(), recon_depth.copy(), recon_feature.copy(), recon_feature_bg.copy(), recon_triplane.copy(), self.get_label(recon_labels), self.get_shape_param(source_labels), self.get_exp_param(driving_labels), self.get_pose_param(driving_labels), self.get_eye_pose_param(driving_labels), source_motions.copy(), driving_motions.copy() |