File size: 32,631 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
import os
import numpy as np
import torch
import torch.nn.functional as F
import cv2
import torchvision
from lib.render_utils.renderer import (
    batch_orth_proj, angle2matrix, face_vertices, render_after_rasterize
)
from lib.render_utils.ortho_renderer import get_renderer
from lib.FaceVerse.FaceVerseModel_v3 import ModelRenderer
import torchvision.utils as utils
from tqdm import tqdm
from lib.FaceVerse import get_recon_model
import time
from pytorch3d.structures import Meshes
import json
import multiprocessing
import shutil

count, total = multiprocessing.Value('i', 0), multiprocessing.Value('i', 0)


def load_obj_data(filename):
    """Load model data from .obj file."""
    v_list, vt_list, vc_list, vn_list = [], [], [], []
    f_list, fn_list, ft_list = [], [], []

    with open(filename, 'r') as fp:
        lines = fp.readlines()

    def seg_element_data(ele_str):
        """Parse face element data."""
        eles = ele_str.strip().split('/')
        fv, ft, fn = None, None, None
        if len(eles) == 1:
            fv = int(eles[0]) - 1
        elif len(eles) == 2:
            fv, ft = int(eles[0]) - 1, int(eles[1]) - 1
        elif len(eles) == 3:
            fv, fn = int(eles[0]) - 1, int(eles[2]) - 1
            ft = None if eles[1] == '' else int(eles[1]) - 1
        return fv, ft, fn

    for line in lines:
        if len(line) < 2:
            continue
        line_data = line.strip().split(' ')

        if line_data[0] == 'v':
            v_list.append(tuple(map(float, line_data[1:4])))
            vc_list.append(tuple(map(float, line_data[4:7])) if len(line_data) == 7 else (0.5, 0.5, 0.5))

        elif line_data[0] == 'vt':
            vt_list.append(tuple(map(float, line_data[1:3])))

        elif line_data[0] == 'vn':
            vn_list.append(tuple(map(float, line_data[1:4])))

        elif line_data[0] == 'f':
            fv0, ft0, fn0 = seg_element_data(line_data[1])
            fv1, ft1, fn1 = seg_element_data(line_data[2])
            fv2, ft2, fn2 = seg_element_data(line_data[3])
            f_list.append((fv0, fv1, fv2))
            if None not in (ft0, ft1, ft2):
                ft_list.append((ft0, ft1, ft2))
            if None not in (fn0, fn1, fn2):
                fn_list.append((fn0, fn1, fn2))

    return {
        'v': np.asarray(v_list), 'vt': np.asarray(vt_list), 'vc': np.asarray(vc_list),
        'vn': np.asarray(vn_list), 'f': np.asarray(f_list), 'ft': np.asarray(ft_list),
        'fn': np.asarray(fn_list)
    }


def save_obj_data(model, filename, log=True):
    """Save model data to .obj file."""
    assert 'v' in model and model['v'].size != 0

    with open(filename, 'w') as fp:
        if 'v' in model:
            for v, vc in zip(model['v'], model.get('vc', [])):
                fp.write(f"v {v[0]} {v[1]} {v[2]} {vc[2]} {vc[1]} {vc[0]}\n")
            for v in model['v']:
                fp.write(f"v {v[0]} {v[1]} {v[2]}\n")

        if 'vn' in model:
            for vn in model['vn']:
                fp.write(f"vn {vn[0]} {vn[1]} {vn[2]}\n")

        if 'vt' in model:
            for vt in model['vt']:
                fp.write(f"vt {vt[0]} {vt[1]}\n")

        if 'f' in model:
            for f_, ft_, fn_ in zip(model['f'], model.get('ft', []), model.get('fn', [])):
                f, ft, fn = np.array(f_) + 1, np.array(ft_) + 1, np.array(fn_) + 1
                fp.write(f"f {f[0]}/{ft[0]}/{fn[0]} {f[1]}/{ft[1]}/{fn[1]} {f[2]}/{ft[2]}/{fn[2]}\n")

    if log:
        print(f"Saved mesh as {filename}")


def gen_mouth_mask(lms_2d, new_crop=True):
    """Generate a mouth mask based on 2D landmarks."""
    lm = lms_2d[np.newaxis, ...]

    if new_crop:
        lm_mouth_outer = lm[:, [164, 18, 57, 287]]
        mouth_mask = np.concatenate([
            np.min(lm_mouth_outer[..., 1], axis=1, keepdims=True),
            np.max(lm_mouth_outer[..., 1], axis=1, keepdims=True),
            np.min(lm_mouth_outer[..., 0], axis=1, keepdims=True),
            np.max(lm_mouth_outer[..., 0], axis=1, keepdims=True)], axis=1
        )
    else:
        lm_mouth_outer = lm[:, [0, 17, 61, 291, 39, 269, 405, 181]]
        mouth_avg = np.mean(lm_mouth_outer, axis=1, keepdims=False)
        ups, bottoms = np.max(lm_mouth_outer[..., 0], axis=1, keepdims=True), np.min(lm_mouth_outer[..., 0], axis=1,
                                                                                     keepdims=True)
        lefts, rights = np.min(lm_mouth_outer[..., 1], axis=1, keepdims=True), np.max(lm_mouth_outer[..., 1], axis=1,
                                                                                      keepdims=True)
        mask_res = np.max(np.concatenate((ups - bottoms, rights - lefts), axis=1), axis=1, keepdims=True) * 1.2
        mask_res = mask_res.astype(int)
        mouth_mask = np.concatenate([
            (mouth_avg[:, 1:] - mask_res // 2).astype(int),
            (mouth_avg[:, 1:] + mask_res // 2).astype(int),
            (mouth_avg[:, :1] - mask_res // 2).astype(int),
            (mouth_avg[:, :1] + mask_res // 2).astype(int)], axis=1
        )

    return mouth_mask[0]
def render_orth(tracking_dir, save_dir, face_model_dir, fv2fl_T, orth_transforms, render_vis=True, save_mesh_dir=None):
    """
    Perform orthographic rendering of face models.

    Args:
        tracking_dir (str): Directory containing tracking data.
        save_dir (str): Directory to save rendered results.
        face_model_dir (str): Directory containing face model files.
        fv2fl_T (np.ndarray): Transformation matrix.
        orth_transforms (dict): Orthographic transformation parameters.
        render_vis (bool): Whether to save visualization images.
        save_mesh_dir (str, optional): Directory to save mesh files.

    Returns:
        None
    """
    debug = False
    save_mesh_flag = save_mesh_dir is not None
    res = 256

    # Initialize orthographic renderer
    ortho_renderer = get_renderer(
        img_size=res,
        device='cuda:0',
        T=torch.tensor([[0, 0, 10.]], dtype=torch.float32, device='cuda:0'),
        K=[-1.0, -1.0, 0., 0.],
        orthoCam=True,
        rasterize_blur_radius=1e-6
    )

    orth_scale = orth_transforms['scale']
    orth_shift = torch.from_numpy(orth_transforms['shift']).cuda().unsqueeze(0)

    # Load face model
    face_model_path = os.path.join(face_model_dir, 'faceverse_v3_1.npy')
    recon_model, model_dict = get_recon_model(model_path=face_model_path, return_dict=True, device='cuda:0')

    vert_uvcoords = model_dict['uv_per_ver']

    # Expand the UV area for better face fitting
    vert_idx = (vert_uvcoords[:, 1] > 0.273) & (vert_uvcoords[:, 1] < 0.727) & \
               (vert_uvcoords[:, 0] > 0.195) & (vert_uvcoords[:, 0] < 0.805)
    vert_uvcoords[vert_idx] = (vert_uvcoords[vert_idx] - 0.5) * 1.4 + 0.5

    vert_uvcoords = torch.from_numpy(vert_uvcoords).unsqueeze(0).cuda()
    faces = uvfaces = torch.from_numpy(model_dict['tri']).unsqueeze(0).cuda()

    # Load face mask
    vert_mask = np.load(os.path.join(face_model_dir, 'v31_face_mask_new.npy'))
    vert_mask[model_dict['ver_inds'][0]:model_dict['ver_inds'][2]] = 1
    vert_mask = torch.from_numpy(vert_mask).view(1, -1, 1).cuda()

    vert_uvcoords = vert_uvcoords * 2 - 1
    vert_uvcoords = torch.cat([vert_uvcoords, vert_mask], dim=-1)  # [bz, ntv, 3]
    face_uvcoords = face_vertices(vert_uvcoords, uvfaces).cuda()

    # Prepare to save mesh if required
    if save_mesh_flag:
        tri = recon_model.tri.cpu().numpy().squeeze()
        uv = recon_model.uv.cpu().numpy().squeeze()
        tri_uv = recon_model.tri_uv.cpu().numpy().squeeze()

    # Transformation matrix
    trans_init = torch.from_numpy(fv2fl_T).cuda()
    R_ = trans_init[:3, :3]
    t_ = trans_init[:3, 3:]

    tform = angle2matrix(torch.tensor([0, 0, 0]).reshape(1, -1)).cuda()
    cam = torch.tensor([1., 0, 0]).cuda()

    mouth_masks = []
    total_num = len(os.listdir(tracking_dir))
    progress_bar = tqdm(os.listdir(tracking_dir))

    t0 = time.time()
    count = 0

    for name in progress_bar:
        prefix = '0'
        dst_sub_dir = os.path.join(save_dir, prefix)
        os.makedirs(dst_sub_dir, exist_ok=True)

        coeff = torch.from_numpy(np.load(os.path.join(tracking_dir, name, 'coeffs.npy'))).unsqueeze(0).cuda()
        id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale = recon_model.split_coeffs(coeff)

        # Compute vertices
        vs = recon_model.get_vs(id_coeff, exp_coeff)
        vert = torch.matmul(vs[0], R_.T) + t_.T

        v = vert.unsqueeze(0)
        transformed_vertices = (torch.bmm(v, tform) + orth_shift) * orth_scale
        transformed_vertices = batch_orth_proj(transformed_vertices, cam)
        transformed_vertices = torch.bmm(transformed_vertices,
                                         angle2matrix(torch.tensor([0, 180, 0]).reshape(1, -1)).cuda())

        # Save mesh if required
        if save_mesh_flag:
            mesh = {'v': transformed_vertices.squeeze().cpu().numpy(), 'vt': uv, 'f': tri, 'ft': tri_uv}
            os.makedirs(os.path.join(save_mesh_dir, prefix), exist_ok=True)
            save_obj_data(mesh, os.path.join(save_mesh_dir, prefix, name.split('.')[0] + '.obj'), log=False)

        # Rasterization and rendering
        mesh = Meshes(transformed_vertices, faces.long())
        fragment = ortho_renderer.rasterizer(mesh)

        rendering = render_after_rasterize(
            attributes=face_uvcoords,
            pix_to_face=fragment.pix_to_face,
            bary_coords=fragment.bary_coords
        )

        uvcoords_images, render_mask = rendering[:, :-1, :, :], rendering[:, -1:, :, :]
        render_mask *= uvcoords_images[:, -1:]
        uvcoords_images *= render_mask

        np.save(os.path.join(dst_sub_dir, name.split('.')[0] + '.npy'), rendering[0].permute(1, 2, 0).cpu().numpy())

        if render_vis:
            utils.save_image(uvcoords_images, os.path.join(dst_sub_dir, name.split('.')[0] + '.png'), normalize=True,
                             range=(-1, 1))

        # Compute 2D landmarks
        lms_3d = recon_model.get_lms(transformed_vertices).cpu().squeeze().numpy()
        lms_2d = np.round((lms_3d[:, :2] + 1) * 0.5 * res).astype(np.uint8)
        mouth_mask = gen_mouth_mask(lms_2d)
        mouth_masks.append([f'{prefix}/{name.split(".")[0]}.png', mouth_mask.tolist()])

        count += 1
        progress_bar.set_description(f'{name.split(".")[0]} {int(1000 * (time.time() - t0) / count):03d}')

    # Save mouth masks
    with open(os.path.join(save_dir, 'mouth_masks.json'), "w") as f:
        json.dump(mouth_masks, f, indent=4)

def render_orth_mp(
    tracking_dir, save_dir, face_model_dir, fv2fl_T, orth_transforms, focal_ratio,
    render_vis=False, save_mesh_dir=None, save_uv_dir=None, num_thread=1,
    render_normal_uv=False, prefix_ls=None, crop_param=None, use_smooth=False,
    save_coeff=False, skip=False
):
    """
    Perform multi-threaded orthographic rendering of face models.

    Args:
        tracking_dir (str): Directory containing tracking data.
        save_dir (str): Directory to save rendered results.
        face_model_dir (str): Directory containing face model files.
        fv2fl_T (np.ndarray): Transformation matrix.
        orth_transforms (dict): Orthographic transformation parameters.
        focal_ratio (float): Camera focal length ratio.
        render_vis (bool): Whether to save visualization images.
        save_mesh_dir (str, optional): Directory to save mesh files.
        save_uv_dir (str, optional): Directory to save UV maps.
        num_thread (int): Number of threads for parallel processing.
        render_normal_uv (bool): Whether to render normal UV maps.
        prefix_ls (list, optional): List of prefixes to process.
        crop_param (dict, optional): Cropping parameters.
        use_smooth (bool): Whether to use smoothed coefficients.
        save_coeff (bool): Whether to save coefficients.
        skip (bool): Whether to skip already processed directories.

    Returns:
        None
    """
    print(f'Num Threads: {num_thread}')

    if num_thread > 1:
        # Prepare data for multiprocessing
        data_ls = [
            {
                'tracking_dir': os.path.join(tracking_dir, prefix),
                'save_dir': save_dir,
                'face_model_dir': face_model_dir,
                'fv2fl_T': fv2fl_T,
                'orth_transforms': orth_transforms,
                'render_vis': render_vis,
                'save_mesh_dir': save_mesh_dir,
                'save_uv_dir': save_uv_dir,
                'prefix': prefix,
                'render_normal_uv': render_normal_uv,
                'crop_param': crop_param,
                'use_smooth': use_smooth,
                'focal_ratio': focal_ratio,
                'save_coeff': save_coeff
            }
            for prefix in os.listdir(tracking_dir)
            if os.path.isdir(os.path.join(tracking_dir, prefix)) and
               (not os.path.exists(os.path.join(save_dir, prefix)) if skip else True)
        ]

        num_thread = min(num_thread, len(data_ls))
        with multiprocessing.Pool(num_thread) as pool:
            pool.map(perform_render, data_ls)
    else:
        # Single-threaded execution
        if prefix_ls is None:
            for prefix in os.listdir(tracking_dir):
                if os.path.isdir(os.path.join(tracking_dir, prefix)):
                    perform_render({
                        'tracking_dir': os.path.join(tracking_dir, prefix),
                        'save_dir': save_dir,
                        'face_model_dir': face_model_dir,
                        'fv2fl_T': fv2fl_T,
                        'orth_transforms': orth_transforms,
                        'render_vis': render_vis,
                        'save_mesh_dir': save_mesh_dir,
                        'save_uv_dir': save_uv_dir,
                        'prefix': prefix,
                        'render_normal_uv': render_normal_uv,
                        'crop_param': crop_param,
                        'use_smooth': use_smooth,
                        'focal_ratio': focal_ratio,
                        'save_coeff': save_coeff
                    })
        else:
            for prefix in prefix_ls:
                prefix = prefix if prefix else '0'
                perform_render({
                    'tracking_dir': tracking_dir,
                    'save_dir': save_dir,
                    'face_model_dir': face_model_dir,
                    'fv2fl_T': fv2fl_T,
                    'focal_ratio': focal_ratio,
                    'orth_transforms': orth_transforms,
                    'render_vis': render_vis,
                    'save_mesh_dir': save_mesh_dir,
                    'save_uv_dir': save_uv_dir,
                    'prefix': prefix,
                    'render_normal_uv': render_normal_uv,
                    'crop_param': crop_param,
                    'use_smooth': use_smooth,
                    'save_coeff': save_coeff
                })

def perform_render(data):
    """
    Perform rendering and optionally save UV maps.

    Args:
        data (dict): Dictionary containing rendering parameters.

    Returns:
        None
    """
    render_orth_(data)

    if data.get('save_uv_dir') is not None:
        save_uv_(data)

def save_uv_(data):
    """
    Save UV maps, including normal maps and projected position maps.

    Args:
        data (dict): Dictionary containing rendering parameters.

    Returns:
        None
    """
    # Extract parameters from data dictionary
    tracking_dir = data['tracking_dir']
    save_uv_dir = data['save_uv_dir']
    face_model_dir = data['face_model_dir']
    prefix = data['prefix']
    focal_ratio = data['focal_ratio']
    render_normal_uv = data['render_normal_uv']

    img_res, render_res = 512, 256  # Default image resolution is 512

    # Initialize UV renderer
    uv_renderer = get_renderer(
        img_size=render_res,
        device='cuda:0',
        T=torch.tensor([[0, 0, 10.]], dtype=torch.float32, device='cuda:0'),
        K=[-1.0, -1.0, 0., 0.],
        orthoCam=True,
        rasterize_blur_radius=1e-6
    )

    # Camera intrinsic matrix
    cam_K = np.eye(3, dtype=np.float32)
    cam_K[0, 0] = cam_K[1, 1] = focal_ratio * img_res
    cam_K[0, 2] = cam_K[1, 2] = img_res // 2

    # Initialize model renderer
    renderer = ModelRenderer(img_size=img_res, device='cuda:0', intr=cam_K, cam_dist=5.0)

    # Load face model
    face_model_path = os.path.join(face_model_dir, 'faceverse_v3_1.npy')
    recon_model, model_dict = get_recon_model(model_path=face_model_path, return_dict=True, device='cuda:0', img_size=img_res, intr=cam_K, cam_dist=5)

    vert_uvcoords = model_dict['uv_per_ver']

    # Expand the UV area for better face fitting
    vert_idx = (vert_uvcoords[:, 1] > 0.273) & (vert_uvcoords[:, 1] < 0.727) & \
               (vert_uvcoords[:, 0] > 0.195) & (vert_uvcoords[:, 0] < 0.805)
    vert_uvcoords[vert_idx] = (vert_uvcoords[vert_idx] - 0.5) * 1.4 + 0.5

    vert_uvcoords = torch.from_numpy(vert_uvcoords).unsqueeze(0).cuda()
    faces = torch.from_numpy(model_dict['tri']).unsqueeze(0).cuda()

    # Load face mask
    vert_mask = np.load(os.path.join(face_model_dir, 'v31_face_mask_new.npy'))
    vert_mask[model_dict['ver_inds'][0]:model_dict['ver_inds'][2]] = 1
    vert_mask = torch.from_numpy(vert_mask).view(1, -1, 1).cuda()

    vert_uvcoords = vert_uvcoords * 2 - 1
    vert_mask[0, ~vert_idx] *= 0  # For UV rendering
    vert_uvcoords = torch.cat([vert_uvcoords, (1 - vert_mask)], dim=-1)

    # UV rasterization
    uv_fragment = uv_renderer.rasterizer(Meshes(vert_uvcoords, faces.long()))

    # Load UV face mask
    uv_face_eye_mask = cv2.imread(os.path.join(face_model_dir, 'dense_uv_expanded_mask_onlyFace.png'))[..., 0]
    uv_face_eye_mask = torch.from_numpy(uv_face_eye_mask.astype(np.float32) / 255).view(1, 256, 256, 1).permute(0, 3, 1, 2)

    os.makedirs(os.path.join(save_uv_dir, prefix), exist_ok=True)

    print(f'Rendering: {tracking_dir}')
    for name in os.listdir(tracking_dir):
        if not os.path.exists(os.path.join(tracking_dir, name, 'finish')):
            print(f'Missing: {os.path.join(tracking_dir, name, "finish")}')
            continue

        coeff = torch.from_numpy(np.load(os.path.join(tracking_dir, name, 'coeffs.npy'))).unsqueeze(0).cuda()
        id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale = recon_model.split_coeffs(coeff)

        # Compute eye transformations
        l_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, :2])
        r_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, 2:])
        l_eye_mean = recon_model.get_l_eye_center(id_coeff)
        r_eye_mean = recon_model.get_r_eye_center(id_coeff)

        # Compute vertex positions
        vs = recon_model.get_vs(id_coeff, exp_coeff, l_eye_mat, r_eye_mat, l_eye_mean, r_eye_mean)

        # Save canonical vertex normal map in UV
        if render_normal_uv:
            vert_norm = recon_model.compute_norm(vs, recon_model.tri, recon_model.point_buf)
            vert_norm = torch.clip((vert_norm + 1) * 127.5, 0, 255)
            vert_norm = torch.cat([vert_norm, vert_mask], dim=-1)

            rendered_normal = render_after_rasterize(
                attributes=face_vertices(vert_norm, faces),
                pix_to_face=uv_fragment.pix_to_face,
                bary_coords=uv_fragment.bary_coords
            ).cpu()

            rendered_normal = rendered_normal[:, :3] * (rendered_normal[:, -1:].clone() * rendered_normal[:, -2:-1]) * uv_face_eye_mask
            normal_img = torch.clamp(rendered_normal[0, :3, :, :], 0, 255).permute(1, 2, 0).cpu().numpy().astype(np.uint8)

            cv2.imwrite(os.path.join(save_uv_dir, prefix, f'{name}_uvnormal.png'), normal_img[:, :, ::-1])

        # Save projected position map in UV
        rotation = recon_model.compute_rotation_matrix(angles)
        vs_t = recon_model.rigid_transform(vs, rotation, translation, torch.abs(scale))
        vs_norm = recon_model.compute_norm(vs_t, recon_model.tri, recon_model.point_buf)
        vs_proj = renderer.project_vs(vs_t) / img_res * 2 - 1  # Normalize to [-1, 1]

        vert_attr = torch.cat([vs_proj, vert_mask * (vs_norm[..., 2:] > 0.1).float()], dim=-1)

        uv_pverts = render_after_rasterize(
            attributes=face_vertices(vert_attr, faces),
            pix_to_face=uv_fragment.pix_to_face,
            bary_coords=uv_fragment.bary_coords
        ).cpu()

        uv_pverts = (uv_pverts[:, :-1] * uv_pverts[:, -1:])  # Projected position map in UV
        uv_pverts[:, -1:] *= uv_face_eye_mask

        np.save(os.path.join(save_uv_dir, prefix, f'{name}.npy'), uv_pverts[0].permute(1, 2, 0).numpy().astype(np.float16))

        # Load original image
        image_path = os.path.join(os.path.dirname(save_uv_dir), 'images512x512', prefix, f'{name}.png')
        images = cv2.imread(image_path)
        images = torch.from_numpy(images.astype(np.float32) / 255).view(1, 512, 512, 3).permute(0, 3, 1, 2)

        uv_gt = F.grid_sample(images, uv_pverts.permute(0, 2, 3, 1)[..., :2], mode='bilinear', align_corners=False)
        uv_texture_gt = uv_gt * uv_pverts[:, -1:] + torch.ones_like(uv_gt) * (1 - uv_pverts[:, -1:])

        cv2.imwrite(os.path.join(save_uv_dir, prefix, f'{name}_uvgttex.png'), (uv_texture_gt[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8))

def render_orth_(data):
    """
    Perform orthographic rendering of face models.

    Args:
        data (dict): Dictionary containing rendering parameters.

    Returns:
        None
    """
    # Extract parameters from the dictionary
    tracking_dir = data['tracking_dir']
    save_dir = data['save_dir']
    face_model_dir = data['face_model_dir']
    fv2fl_T = data['fv2fl_T']
    orth_transforms = data['orth_transforms']
    prefix = data['prefix']
    render_vis = data['render_vis']
    save_mesh_dir = data['save_mesh_dir']
    crop_param = data['crop_param']
    use_smooth = data['use_smooth']
    save_coeff = data['save_coeff']

    save_mesh_flag = save_mesh_dir is not None
    res, render_res = 256, 512  # Final crop ensures 256x256 output

    # Initialize orthographic renderer
    ortho_renderer = get_renderer(
        img_size=render_res,
        device='cuda:0',
        T=torch.tensor([[0, 0, 10.]], dtype=torch.float32, device='cuda:0'),
        K=[-1.0, -1.0, 0., 0.],
        orthoCam=True,
        rasterize_blur_radius=1e-6
    )

    orth_scale = orth_transforms['scale']
    orth_shift = torch.from_numpy(orth_transforms['shift']).cuda().unsqueeze(0)

    # Load face model
    face_model_path = os.path.join(face_model_dir, 'faceverse_v3_1.npy')
    recon_model, model_dict = get_recon_model(model_path=face_model_path, return_dict=True, device='cuda:0')

    vert_uvcoords = model_dict['uv_per_ver']

    # Expand the UV area for better face fitting
    vert_idx = (vert_uvcoords[:, 1] > 0.273) & (vert_uvcoords[:, 1] < 0.727) & \
               (vert_uvcoords[:, 0] > 0.195) & (vert_uvcoords[:, 0] < 0.805)
    vert_uvcoords[vert_idx] = (vert_uvcoords[vert_idx] - 0.5) * 1.4 + 0.5

    vert_uvcoords = torch.from_numpy(vert_uvcoords).unsqueeze(0).cuda()
    faces = uvfaces = torch.from_numpy(model_dict['tri']).unsqueeze(0).cuda()

    # Load face mask
    vert_mask = np.load(os.path.join(face_model_dir, 'v31_face_mask_new.npy'))
    vert_mask[model_dict['ver_inds'][0]:model_dict['ver_inds'][2]] = 1
    vert_mask = torch.from_numpy(vert_mask).view(1, -1, 1).cuda()

    vert_uvcoords = vert_uvcoords * 2 - 1
    vert_uvcoords = torch.cat([vert_uvcoords, vert_mask.clone()], dim=-1)
    face_uvcoords = face_vertices(vert_uvcoords, uvfaces)

    vert_mask[0, ~vert_idx] *= 0  # For UV rendering

    # Prepare to save mesh if required
    if save_mesh_flag:
        tri = recon_model.tri.cpu().numpy().squeeze()
        uv = recon_model.uv.cpu().numpy().squeeze()
        tri_uv = recon_model.tri_uv.cpu().numpy().squeeze()
        os.makedirs(os.path.join(save_mesh_dir, prefix), exist_ok=True)

    # Transformation matrix
    trans_init = torch.from_numpy(fv2fl_T).cuda()
    R_ = trans_init[:3, :3]
    t_ = trans_init[:3, 3:]

    tform = angle2matrix(torch.tensor([0, 0, 0]).reshape(1, -1)).cuda()
    cam = torch.tensor([1., 0, 0]).cuda()

    mouth_masks = []

    print(f'Rendering: {tracking_dir}')
    for name in os.listdir(tracking_dir):
        if not os.path.exists(os.path.join(tracking_dir, name, 'finish')):
            print(f'Missing: {os.path.join(tracking_dir, name, "finish")}')
            continue

        dst_sub_dir = os.path.join(save_dir, prefix)
        os.makedirs(dst_sub_dir, exist_ok=True)

        # Load coefficients
        coeff_path = os.path.join(tracking_dir, name, 'smooth_coeffs.npy' if use_smooth else 'coeffs.npy')
        if save_coeff:
            shutil.copy(coeff_path, os.path.join(dst_sub_dir, f'{name}_coeff.npy'))

        coeff = torch.from_numpy(np.load(coeff_path)).unsqueeze(0).cuda()
        id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale = recon_model.split_coeffs(coeff)

        # Compute eye transformations
        l_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, :2])
        r_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, 2:])
        l_eye_mean = recon_model.get_l_eye_center(id_coeff)
        r_eye_mean = recon_model.get_r_eye_center(id_coeff)

        # Compute vertex positions
        vs = recon_model.get_vs(id_coeff, exp_coeff, l_eye_mat, r_eye_mat, l_eye_mean, r_eye_mean)
        vert = torch.matmul(vs[0], R_.T) + t_.T

        v = vert.unsqueeze(0)
        transformed_vertices = (torch.bmm(v, tform) + orth_shift) * orth_scale
        transformed_vertices = batch_orth_proj(transformed_vertices, cam)

        # Reverse Z-axis for proper rendering
        transformed_vertices[..., -1] *= -1

        # Save mesh if required
        if save_mesh_flag:
            mesh = {'v': transformed_vertices.squeeze().cpu().numpy(), 'vt': uv, 'f': tri, 'ft': tri_uv}
            save_obj_data(mesh, os.path.join(save_mesh_dir, prefix, f'{name}.obj'), log=False)

        # Rasterization and rendering
        mesh = Meshes(transformed_vertices, faces.long())
        fragment = ortho_renderer.rasterizer(mesh)

        rendering = render_after_rasterize(
            attributes=face_uvcoords,
            pix_to_face=fragment.pix_to_face,
            bary_coords=fragment.bary_coords
        )

        render_mask = rendering[:, -1:, :, :].clone()
        render_mask *= rendering[:, -2:-1]
        rendering *= render_mask

        # Apply cropping if needed
        if crop_param is not None:
            rendering = rendering[:, :, crop_param[1]:crop_param[1] + crop_param[3], crop_param[0]:crop_param[0] + crop_param[2]]

        if res != rendering.shape[2]:
            rendering = F.interpolate(rendering, size=(res, res), mode='bilinear', align_corners=False)

        np.save(os.path.join(dst_sub_dir, f'{name}.npy'), rendering[0].permute(1, 2, 0).cpu().numpy().astype(np.float16))

        # Compute mouth mask
        lms_3d = recon_model.get_lms(transformed_vertices).cpu().squeeze().numpy()
        lms_2d = np.round((lms_3d[:, :2] + 1) * 0.5 * res).astype(np.uint8)
        mouth_mask = gen_mouth_mask(lms_2d, new_crop=False)
        mouth_masks.append([f'{prefix}/{name}.png', mouth_mask.tolist()])

        # Visualization
        if render_vis:
            boxes = torch.tensor([[mouth_mask[2], mouth_mask[0], mouth_mask[3], mouth_mask[1]]])
            vis_uvcoords = utils.draw_bounding_boxes(((rendering[0, :-1, :, :] + 1) * 127.5).to(dtype=torch.uint8).cpu(), boxes, colors=(0, 255, 0), width=1)
            vis_image = torchvision.transforms.ToPILImage()(vis_uvcoords)
            vis_image.save(os.path.join(dst_sub_dir, f'{name}.png'))
def fill_mouth(images):
    """
    Fill the mouth area in images.

    Args:
        images: Input images, shape [batch, 1, H, W].

    Returns:
        Images with filled mouth regions.
    """
    device = images.device
    mouth_masks = []

    for image in images:
        img = (image[0].cpu().numpy() * 255.).astype(np.uint8)
        copy_img = img.copy()
        mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), np.uint8)
        cv2.floodFill(copy_img, mask, (0, 0), 255, loDiff=0, upDiff=254, flags=cv2.FLOODFILL_FIXED_RANGE)
        copy_img = (torch.tensor(copy_img, device=device).float() / 127.5) - 1
        mouth_masks.append(copy_img.unsqueeze(0))

    mouth_masks = torch.stack(mouth_masks, dim=0)
    mouth_masks = ((mouth_masks * 2 - 1) * -1 + 1) / 2
    return torch.clamp(images + mouth_masks, 0, 1)


def rasterize(verts, faces, face_attr, rasterizer, cam_dist=10):
    """Perform rasterization of vertices and faces."""
    verts[:, :, 2] += cam_dist
    return rasterizer(verts, faces, face_attr, 256, 256)


def ortho_render(verts, faces, face_attr, renderer):
    """Perform orthographic rendering."""
    mesh = Meshes(verts, faces.long())
    return renderer(mesh, face_attr, need_rgb=False)[-1]


def calculate_new_intrinsic(intr, mode, param):
    """
    Calculate new intrinsic matrix based on transformation mode.

    Args:
        intr: Original intrinsic matrix.
        mode: Transformation mode ('resize', 'crop', 'padding').
        param: Transformation parameters.

    Returns:
        Modified intrinsic matrix.
    """
    cam_K = intr.copy()

    if mode == 'resize':
        cam_K[0] *= param[0]
        cam_K[1] *= param[1]
    elif mode == 'crop':
        cam_K[0, 2] -= param[0]  # -left
        cam_K[1, 2] -= param[1]  # -top
    elif mode == 'padding':
        cam_K[0, 2] += param[2]  # + padding left
        cam_K[1, 2] += param[0]  # + padding top
    else:
        raise ValueError("Invalid transformation mode")

    return cam_K


def make_cam_dataset_FFHQ(tracking_dir, fv2fl_T, focal_ratio=2.568, use_smooth=False, test_data=False):
    """
    Create camera dataset for FFHQ.

    Args:
        tracking_dir: Directory containing tracking data.
        fv2fl_T: Transformation matrix from faceverse to face landmarks.
        focal_ratio: Camera focal length ratio.
        use_smooth: Whether to use smoothed coefficients.
        test_data: Whether to create a test dataset.

    Returns:
        Camera parameters, condition parameters, expression and eye movement parameters.
    """
    cam_K = np.eye(3, dtype=np.float32)
    cam_K[0, 0] = cam_K[1, 1] = focal_ratio
    cam_K[0, 2] = cam_K[1, 2] = 0.5

    cam_params, cond_cam_params, fv_exp_eye_params = ({}, {}, {}) if test_data else ([], [], [])

    for prefix in tqdm(os.listdir(tracking_dir)):
        if not os.path.isdir(os.path.join(tracking_dir, prefix)):
            continue

        if test_data:
            cam_params[prefix], cond_cam_params[prefix], fv_exp_eye_params[prefix] = [], [], []

        for name in os.listdir(os.path.join(tracking_dir, prefix)):
            if not os.path.exists(os.path.join(tracking_dir, prefix, name, 'finish')):
                continue

            metaFace_extr = np.load(
                os.path.join(tracking_dir, prefix, name,
                             'metaFace_extr_smooth.npz' if use_smooth else 'metaFace_extr.npz')
            )

            camT_mesh2cam = metaFace_extr['transformation']
            camT_cam2mesh = np.linalg.inv(camT_mesh2cam)
            camT_cam2mesh = np.dot(fv2fl_T, camT_cam2mesh)

            angle = metaFace_extr['self_angle']
            trans = metaFace_extr['self_translation']

            coeff = np.load(os.path.join(tracking_dir, prefix, name, 'coeffs.npy'))
            exp_coeff = coeff[150:150 + 171]  # Expression coefficients
            eye_coeff = coeff[572 + 33:572 + 37]  # Eye movement coefficients

            img_path = f"{prefix}/{name}.png"
            cam_data = np.concatenate([camT_cam2mesh.reshape(-1), cam_K.reshape(-1)]).tolist()
            cond_data = np.concatenate([angle, trans]).tolist()
            expr_eye_data = np.concatenate([exp_coeff, eye_coeff]).tolist()

            if test_data:
                cam_params[prefix].append([img_path, cam_data])
                cond_cam_params[prefix].append([img_path, cond_data])
                fv_exp_eye_params[prefix].append([img_path, expr_eye_data])
            else:
                cam_params.append([img_path, cam_data])
                cond_cam_params.append([img_path, cond_data])
                fv_exp_eye_params.append([img_path, expr_eye_data])

    return cam_params, cond_cam_params, fv_exp_eye_params