Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,751 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
"""This script contains the image preprocessing code for Deep3DFaceRecon_pytorch."""
import numpy as np
from scipy.io import loadmat
from PIL import Image
import cv2
import os
from skimage import transform as trans
import torch
import warnings
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
def POS(xp, x):
"""
Calculate translation and scale using least squares for image alignment.
Args:
xp (np.ndarray): Target points, shape (2, N).
x (np.ndarray): Source points, shape (2, N).
Returns:
tuple: Translation vector (t) and scale factor (s).
"""
npts = xp.shape[1]
A = np.zeros([2 * npts, 8])
A[0:2 * npts - 1:2, 0:3] = x.T
A[0:2 * npts - 1:2, 3] = 1
A[1:2 * npts:2, 4:7] = x.T
A[1:2 * npts:2, 7] = 1
b = xp.T.reshape([2 * npts, 1])
k, _, _, _ = np.linalg.lstsq(A, b, rcond=None)
R1, R2 = k[:3], k[4:7]
sTx, sTy = k[3], k[7]
s = (np.linalg.norm(R1) + np.linalg.norm(R2)) / 2
t = np.array([sTx, sTy])
return t, s
def BBRegression(points, params):
"""
Perform bounding box regression for 68 landmark detection.
Args:
points (np.ndarray): Facial landmarks, shape (5, 2).
params (dict): Regression parameters.
Returns:
np.ndarray: Bounding box [x, y, w, h].
"""
w1, b1, w2, b2 = params['W1'], params['B1'], params['W2'], params['B2']
data = points.reshape([5, 2])
data_mean = np.mean(data, axis=0)
data -= data_mean
rms = np.sqrt(np.sum(data ** 2) / 5)
data /= rms
data = data.reshape([1, 10]).T
inputs = np.matmul(w1, data) + b1
inputs = 2 / (1 + np.exp(-2 * inputs)) - 1
inputs = np.matmul(w2, inputs) + b2
inputs = inputs.T
x, y = inputs[:, 0] * rms + data_mean[0], inputs[:, 1] * rms + data_mean[1]
w = (224 / inputs[:, 2]) * rms
return np.array([x, y, w, w]).reshape([4])
def img_padding(img, box):
"""
Pad image to avoid cropping issues.
Args:
img (np.ndarray): Input image.
box (np.ndarray): Bounding box [x, y, w, h].
Returns:
tuple: Padded image, updated bounding box, success flag.
"""
success = True
bbox = box.copy()
h, w = img.shape[:2]
padded_img = np.zeros([2 * h, 2 * w, 3])
padded_img[h // 2: h + h // 2, w // 2: w + w // 2] = img
bbox[:2] += [w // 2, h // 2]
if bbox[0] < 0 or bbox[1] < 0:
success = False
return padded_img, bbox, success
def crop(img, bbox):
"""
Crop image based on bounding box.
Args:
img (np.ndarray): Input image.
bbox (np.ndarray): Bounding box [x, y, w, h].
Returns:
tuple: Cropped image, scale factor.
"""
padded_img, padded_bbox, flag = img_padding(img, bbox)
if not flag:
return padded_img, 0
x, y, w, h = padded_bbox
cropped_img = padded_img[y:y + h, x:x + w]
cropped_img = cv2.resize(cropped_img.astype(np.uint8), (224, 224), interpolation=cv2.INTER_CUBIC)
return cropped_img, 224 / w
def scale_trans(img, lm, t, s):
"""
Apply scaling and translation to the image and landmarks.
Args:
img (np.ndarray): Input image.
lm (np.ndarray): Landmarks.
t (np.ndarray): Translation vector.
s (float): Scale factor.
Returns:
tuple: Transformed image, inverse scale parameters.
"""
img_h, img_w = img.shape[:2]
M_s = np.array([[1, 0, -t[0] + img_w // 2 + 0.5], [0, 1, -img_h // 2 + t[1]]], dtype=np.float32)
img = cv2.warpAffine(img, M_s, (img_w, img_h))
w, h = int(img_w / s * 100), int(img_h / s * 100)
img = cv2.resize(img, (w, h))
lm = np.stack([lm[:, 0] - t[0] + img_w // 2, lm[:, 1] - t[1] + img_h // 2], axis=1) / s * 100
bbox = [w // 2 - 112, h // 2 - 112, 224, 224]
cropped_img, scale2 = crop(img, bbox)
assert scale2 != 0
t1 = np.array([bbox[0], bbox[1]])
scale = s / 100
t2 = np.array([t[0] - img_w / 2, t[1] - img_h / 2])
return cropped_img, (scale / scale2, scale * t1 + t2)
def align_for_lm(img, five_points):
"""
Align facial image using facial landmarks for landmark detection refinement.
Args:
img: Input facial image (numpy array)
five_points: Facial landmark coordinates (5 points, 10 values)
Returns:
crop_img: Cropped and aligned facial image
scale: Scaling factor applied during cropping
bbox: Bounding box coordinates [x, y, width, height]
Process:
1. Predict optimal face bounding box using landmark regression
2. Crop and align image based on predicted bounding box
"""
# Reshape landmarks to 1x10 array (5 points x 2 coordinates)
five_points = np.array(five_points).reshape([1, 10])
# Load bounding box regressor parameters (MATLAB format)
params = loadmat('util/BBRegressorParam_r.mat') # Contains regression weights
# Predict optimal face bounding box using regression model
bbox = BBRegression(five_points, params) # Returns [x, y, width, height]
# Verify valid bounding box prediction
assert bbox[2] != 0, "Invalid bounding box width (zero detected)"
# Convert to integer coordinates for cropping
bbox = np.round(bbox).astype(np.int32)
# Crop image and get scaling factor
crop_img, scale = crop(img, bbox) # crop() should handle boundary checks
return crop_img, scale, bbox
def resize_n_crop_img(img, lm, ldmk_3d, t, s, s_3d, target_size=224., mask=None):
"""
Resize and center-crop image with corresponding landmark transformation
Args:
img: PIL.Image - Input image
lm: np.array - Facial landmarks in original image coordinates [N, 2]
t: tuple - (tx, ty) translation parameters
s: float - Scaling factor
target_size: float - Output image dimensions (square)
mask: PIL.Image - Optional mask image
Returns:
img: PIL.Image - Processed image
lm: np.array - Transformed landmarks [N, 2]
mask: PIL.Image - Processed mask (or None)
left: int - Left crop coordinate
up: int - Top crop coordinate
"""
# Original image dimensions
w0, h0 = img.size
# Calculate scaled dimensions
w = (w0 * s).astype(np.int32)
h = (h0 * s).astype(np.int32)
w_3d = (w0 * s_3d).astype(np.int32)
h_3d = (h0 * s_3d).astype(np.int32)
# Calculate crop coordinates after scaling and translation
# Horizontal crop window
left = (w / 2 - target_size / 2 + (t[0] - w0 / 2) * s).astype(np.int32)
right = left + target_size
# Vertical crop window (note inverted Y-axis in images)
up = (h / 2 - target_size / 2 + (h0 / 2 - t[1]) * s).astype(np.int32)
below = up + target_size
left = int(left)
up = int(up)
right = int(right)
below = int(below)
# Resize and crop main image
img = img.resize((w, h), resample=Image.BICUBIC)
img = img.crop((left, up, right, below))
# Process mask if provided
if mask is not None:
mask = mask.resize((w, h), resample=Image.BICUBIC)
mask = mask.crop((left, up, right, below))
# Transform landmarks to cropped coordinates
# 1. Adjust for translation and original image center
# 2. Apply scaling
# 3. Adjust for final crop offset
lm = np.stack([lm[:, 0] - t[0] + w0 / 2,
lm[:, 1] - t[1] + h0 / 2], axis=1) * s
crop_offset = np.array([(w / 2 - target_size / 2),
(h / 2 - target_size / 2)])
lm = lm - crop_offset.reshape(1, 2)
ldmk_3d = np.stack([ldmk_3d[:, 0] - t[0] + w0 / 2, ldmk_3d[:, 1] -
t[1] + h0 / 2], axis=1) * s_3d
ldmk_3d = ldmk_3d - np.reshape(
np.array([(w_3d / 2 - 512 / 2), (h_3d / 2 - 512 / 2)]), [1, 2])
return img, lm, mask, left, up, ldmk_3d
def extract_5p(lm):
"""
Extract 5-point facial landmarks from 68 landmarks.
Args:
lm (np.ndarray): 68 facial landmarks.
Returns:
np.ndarray: 5-point landmarks.
"""
lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1
lm5p = np.stack([
lm[lm_idx[0], :],
np.mean(lm[lm_idx[[1, 2]], :], axis=0),
np.mean(lm[lm_idx[[3, 4]], :], axis=0),
lm[lm_idx[5], :],
lm[lm_idx[6], :]
], axis=0)
return lm5p[[1, 2, 0, 3, 4], :]
def align_img(img, lm, lm3D, ldmk_3d, mask=None, target_size=224., rescale_factor=102., rescale_factor_3D=218.):
"""
Align facial image using 2D-3D landmark correspondence
Args:
img: PIL.Image - Input facial image (H, W, 3)
lm: np.array - Facial landmarks (68, 2) in image coordinates (y-axis inverted)
lm3D: np.array - 3D reference landmarks (5, 3) for pose estimation
mask: PIL.Image - Optional facial mask (H, W, 3)
target_size: float - Output image dimensions (square)
rescale_factor: float - Normalization factor for face scale
Returns:
trans_params: np.array - [raw_W, raw_H, scale, tx, ty] transformation parameters
img_new: PIL.Image - Aligned image (target_size, target_size, 3)
lm_new: np.array - Transformed landmarks (68, 2)
mask_new: PIL.Image - Aligned mask (target_size, target_size)
crop_left: int - Left crop coordinate
crop_up: int - Top crop coordinate
s: float - Final scaling factor
Process:
1. Extract 5-point landmarks if needed
2. Estimate face scale and translation using POS algorithm
3. Resize and crop image with landmark adjustment
"""
# Original image dimensions
w0, h0 = img.size
# Extract 5 facial landmarks if not provided
if lm.shape[0] != 5:
lm5p = extract_5p(lm) # Convert 68-point to 5-point landmarks
else:
lm5p = lm
# Calculate scale and translation using PnP algorithm
# POS (Perspective-n-Point algorithm) implementation
t, s = POS(lm5p.T, lm3D.T) # Returns translation vector and scale factor
s_3d = rescale_factor_3D / s
s = rescale_factor / s # Normalize scale using reference face size
# Apply geometric transformation
img_new, lm_new, mask_new, crop_left, crop_up, ldmk_3d_align = resize_n_crop_img(
img,
lm,
ldmk_3d,
t,
s,
s_3d=s_3d,
target_size=target_size,
mask=mask
)
# Package transformation parameters [original_w, original_h, scale, tx, ty]
trans_params = np.array([w0, h0, s, t[0][0], t[1][0]])
return trans_params, img_new, lm_new, mask_new, crop_left, crop_up, s, ldmk_3d_align
def estimate_norm(lm_68p, H):
"""
Estimate similarity transformation matrix for face alignment.
Args:
lm_68p (np.ndarray): 68 facial landmarks.
H (int): Image height.
Returns:
np.ndarray: Transformation matrix (2, 3).
"""
lm = extract_5p(lm_68p)
lm[:, -1] = H - 1 - lm[:, -1]
tform = trans.SimilarityTransform()
src = np.array([
[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]
], dtype=np.float32)
tform.estimate(lm, src)
M = tform.params
return M[0:2, :] if np.linalg.det(M) != 0 else np.eye(2, 3)
def estimate_norm_torch(lm_68p, H):
"""
Estimate similarity transformation matrix for face alignment using PyTorch.
Args:
lm_68p (torch.Tensor): 68 facial landmarks.
H (int): Image height.
Returns:
torch.Tensor: Transformation matrices.
"""
lm_68p_ = lm_68p.detach().cpu().numpy()
M = [estimate_norm(lm, H) for lm in lm_68p_]
return torch.tensor(np.array(M), dtype=torch.float32, device=lm_68p.device)
|