Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,354 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# PD-FGC motion encoder, modified from https://github.com/Dorniwang/PD-FGC-inference
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=strd, padding=padding, bias=bias)
class ConvBlock(nn.Module):
def __init__(self, in_planes, out_planes):
super(ConvBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))
if in_planes != out_planes:
self.downsample = nn.Sequential(
nn.BatchNorm2d(in_planes),
nn.ReLU(True),
nn.Conv2d(in_planes, out_planes,
kernel_size=1, stride=1, bias=False),
)
else:
self.downsample = None
def forward(self, x):
residual = x
out1 = self.bn1(x)
out1 = F.relu(out1, True)
out1 = self.conv1(out1)
out2 = self.bn2(out1)
out2 = F.relu(out2, True)
out2 = self.conv2(out2)
out3 = self.bn3(out2)
out3 = F.relu(out3, True)
out3 = self.conv3(out3)
out3 = torch.cat((out1, out2, out3), 1)
if self.downsample is not None:
residual = self.downsample(residual)
out3 += residual
return out3
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self.dropout = nn.Dropout(0.5)
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module('b1_' + str(level), ConvBlock(256, 256))
self.add_module('b2_' + str(level), ConvBlock(256, 256))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module('b2_plus_' + str(level), ConvBlock(256, 256))
self.add_module('b3_' + str(level), ConvBlock(256, 256))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
up1 = self.dropout(up1)
# Lower branch
low1 = F.max_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
up1size = up1.size()
rescale_size = (up1size[2], up1size[3])
up2 = F.upsample(low3, size=rescale_size, mode='bilinear')
return up1 + up2
def forward(self, x):
return self._forward(self.depth, x)
class FAN_use(nn.Module):
def __init__(self):
super(FAN_use, self).__init__()
self.num_modules = 1
# Base part
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 128)
self.conv4 = ConvBlock(128, 256)
# Stacking part
hg_module = 0
self.add_module('m' + str(hg_module), HourGlass(1, 4, 256))
self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
self.add_module('conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('l' + str(hg_module), nn.Conv2d(256,
68, kernel_size=1, stride=1, padding=0))
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('al' + str(hg_module), nn.Conv2d(68,
256, kernel_size=1, stride=1, padding=0))
self.avgpool = nn.MaxPool2d((2, 2), 2)
self.conv6 = nn.Conv2d(68, 1, 3, 2, 1)
self.fc = nn.Linear(28 * 28, 512)
self.bn5 = nn.BatchNorm2d(68)
self.relu = nn.ReLU(True)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)), True)
x = F.max_pool2d(self.conv2(x), 2)
x = self.conv3(x)
x = self.conv4(x)
previous = x
i = 0
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = self._modules['bn_end' + str(i)](self._modules['conv_last' + str(i)](ll))
tmp_out = self._modules['l' + str(i)](F.relu(ll))
net = self.relu(self.bn5(tmp_out))
net = self.conv6(net)
net = net.view(-1, net.shape[-2] * net.shape[-1])
net = self.relu(net)
net = self.fc(net)
return net
|