File size: 6,390 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn as nn


class ResNetSE(nn.Module):
    def __init__(self, block, layers, num_filters, nOut, encoder_type='SAP', n_mels=80, n_mel_T=1, log_input=True, **kwargs):
        super(ResNetSE, self).__init__()

        print('Embedding size is %d, encoder %s.' % (nOut, encoder_type))

        self.inplanes = num_filters[0]
        self.encoder_type = encoder_type
        self.n_mels = n_mels
        self.log_input = log_input

        self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.bn1 = nn.BatchNorm2d(num_filters[0])

        self.layer1 = self._make_layer(block, num_filters[0], layers[0])
        self.layer2 = self._make_layer(block, num_filters[1], layers[1], stride=(2, 2))
        self.layer3 = self._make_layer(block, num_filters[2], layers[2], stride=(2, 2))
        self.layer4 = self._make_layer(block, num_filters[3], layers[3], stride=(2, 2))

        self.instancenorm = nn.InstanceNorm1d(n_mels)

        outmap_size = int(self.n_mels * n_mel_T / 8)

        self.attention = nn.Sequential(
                nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1),
                nn.ReLU(),
                nn.BatchNorm1d(128),
                nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1),
                nn.Softmax(dim=2),
        )

        if self.encoder_type == "SAP":
            out_dim = num_filters[3] * outmap_size
        elif self.encoder_type == "ASP":
            out_dim = num_filters[3] * outmap_size * 2
        else:
            raise ValueError('Undefined encoder')

        self.fc = nn.Linear(out_dim, nOut)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, planes * block.expansion,
                              kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def new_parameter(self, *size):
        out = nn.Parameter(torch.FloatTensor(*size))
        nn.init.xavier_normal_(out)
        return out

    def forward(self, x):

        # with torch.no_grad():
        #     x = self.torchfb(x) + 1e-6
        #     if self.log_input: x = x.log()
        #     x = self.instancenorm(x).unsqueeze(1)

        x = self.conv1(x)
        x = self.relu(x)
        x = self.bn1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = x.reshape(x.size()[0], -1, x.size()[-1])

        w = self.attention(x)

        if self.encoder_type == "SAP":
            x = torch.sum(x * w, dim=2)
        elif self.encoder_type == "ASP":
            mu = torch.sum(x * w, dim=2)
            sg = torch.sqrt((torch.sum((x ** 2) * w, dim=2) - mu ** 2).clamp(min=1e-5))
            x = torch.cat((mu, sg), 1)

        x = x.view(x.size()[0], -1)
        x = self.fc(x)

        return x




class SEBasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
        super(SEBasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.se = SELayer(planes, reduction)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.relu(out)
        out = self.bn1(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.se(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)
        return out


class SEBottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
        super(SEBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se = SELayer(planes * 4, reduction)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)
        out = self.se(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class SELayer(nn.Module):
    def __init__(self, channel, reduction=8):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
                nn.Linear(channel, channel // reduction),
                nn.ReLU(inplace=True),
                nn.Linear(channel // reduction, channel),
                nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y