Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,797 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import torch
import torch.nn as nn
import numpy as np
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
FoVOrthographicCameras,
PerspectiveCameras,
OrthographicCameras,
PointLights,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesVertex,
blending
)
class MeshRendererWithDepth(MeshRenderer):
def __init__(self, rasterizer, shader):
super().__init__(rasterizer, shader)
def forward(self, meshes_world, attributes=None, need_rgb=True, **kwargs) -> torch.Tensor:
fragments = self.rasterizer(meshes_world, **kwargs)
images = pixel_vals = None
if attributes is not None:
bary_coords, pix_to_face = fragments.bary_coords, fragments.pix_to_face.clone()
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone();
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
if need_rgb:
images = self.shader(fragments, meshes_world, **kwargs)
return images, fragments.zbuf, pixel_vals
def get_renderer(img_size, device, R=None, T=None, K=None, orthoCam=False, rasterize_blur_radius=0.):
if R is None:
R = torch.eye(3, dtype=torch.float32, device=device).unsqueeze(0)
if orthoCam:
fx, fy, cx, cy = K[0], K[1], K[2], K[3]
cameras = OrthographicCameras(device=device, R=R, T=T, focal_length=torch.tensor([[fx, fy]], device=device, dtype=torch.float32),
principal_point=((cx, cy),),
in_ndc=True)
# cameras = FoVOrthographicCameras(T=T, device=device)
else:
fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2]
fx = -fx * 2.0 / (img_size - 1)
fy = -fy * 2.0 / (img_size - 1)
cx = - (cx - (img_size - 1) / 2.0) * 2.0 / (img_size - 1)
cy = - (cy - (img_size - 1) / 2.0) * 2.0 / (img_size - 1)
cameras = PerspectiveCameras(device=device, R=R, T=T, focal_length=torch.tensor([[fx, fy]], device=device, dtype=torch.float32),
principal_point=((cx, cy),),
in_ndc=True)
lights = PointLights(device=device, location=[[0.0, 0.0, 1e5]],
ambient_color=[[1, 1, 1]],
specular_color=[[0., 0., 0.]], diffuse_color=[[0., 0., 0.]])
raster_settings = RasterizationSettings(
image_size=img_size,
blur_radius=rasterize_blur_radius,
faces_per_pixel=1
# bin_size=0
)
blend_params = blending.BlendParams(background_color=[0, 0, 0])
renderer = MeshRendererWithDepth(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=SoftPhongShader(
device=device,
cameras=cameras,
lights=lights,
blend_params=blend_params
)
)
return renderer
def batch_orth_proj(X, camera):
''' orthgraphic projection
X: 3d vertices, [bz, n_point, 3]
camera: scale and translation, [bz, 3], [scale, tx, ty]
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
shape = X_trans.shape
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
def angle2matrix(angles):
''' get rotation matrix from three rotation angles(degree). right-handed.
Args:
angles: [batch_size, 3] tensor containing X, Y, and Z angles.
x: pitch. positive for looking down.
y: yaw. positive for looking left.
z: roll. positive for tilting head right.
Returns:
R: [batch_size, 3, 3]. rotation matrices.
'''
angles = angles*(np.pi)/180.
s = torch.sin(angles)
c = torch.cos(angles)
cx, cy, cz = (c[:, 0], c[:, 1], c[:, 2])
sx, sy, sz = (s[:, 0], s[:, 1], s[:, 2])
zeros = torch.zeros_like(s[:, 0]).to(angles.device)
ones = torch.ones_like(s[:, 0]).to(angles.device)
# Rz.dot(Ry.dot(Rx))
R_flattened = torch.stack(
[
cz * cy, cz * sy * sx - sz * cx, cz * sy * cx + sz * sx,
sz * cy, sz * sy * sx + cz * cx, sz * sy * cx - cz * sx,
-sy, cy * sx, cy * cx,
],
dim=0) #[batch_size, 9]
R = torch.reshape(R_flattened, (-1, 3, 3)) #[batch_size, 3, 3]
return R
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
def render_after_rasterize(attributes, pix_to_face, bary_coords):
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
return pixel_vals |