Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,317 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# from metaface_fitting 20221122
import torch
from torch import nn
import numpy as np
from pytorch3d.structures import Meshes
# from pytorch3d.renderer import TexturesVertex
from pytorch3d.renderer import (
look_at_view_transform,
PerspectiveCameras,
PointLights,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesVertex,
blending
)
from pytorch3d.loss import (
# mesh_edge_loss,
mesh_laplacian_smoothing,
# mesh_normal_consistency,
)
class FaceVerseModel(nn.Module):
def __init__(self, model_dict, batch_size=1, device='cuda:0', expr_52=True, **kargs):
super(FaceVerseModel, self).__init__()
self.batch_size = batch_size
self.device = torch.device(device)
self.rotXYZ = torch.eye(3).view(1, 3, 3).repeat(3, 1, 1).view(3, 1, 3, 3).to(self.device)
self.renderer = ModelRenderer(device, **kargs)
self.kp_inds = torch.tensor(model_dict['mediapipe_keypoints'].reshape(-1, 1), requires_grad=False).squeeze().long().to(self.device)
self.ver_inds = model_dict['ver_inds']
self.tri_inds = model_dict['tri_inds']
meanshape = torch.tensor(model_dict['meanshape'].reshape(-1, 3), dtype=torch.float32, requires_grad=False, device=self.device)
meanshape[:, [1, 2]] *= -1
meanshape = meanshape * 0.1
meanshape[:, 1] += 1
self.meanshape = meanshape.reshape(1, -1)
self.meantex = torch.tensor(model_dict['meantex'].reshape(1, -1), dtype=torch.float32, requires_grad=False, device=self.device)
idBase = torch.tensor(model_dict['idBase'].reshape(-1, 3, 150), dtype=torch.float32, requires_grad=False, device=self.device)
idBase[:, [1, 2]] *= -1
self.idBase = (idBase * 0.1).reshape(-1, 150)
self.expr_52 = expr_52
if expr_52:
expBase = torch.tensor(np.load('metamodel/v3/exBase_52.npy').reshape(-1, 3, 52), dtype=torch.float32, requires_grad=False, device=self.device)
else:
expBase = torch.tensor(model_dict['exBase'].reshape(-1, 3, 171), dtype=torch.float32, requires_grad=False, device=self.device)
expBase[:, [1, 2]] *= -1
self.expBase = (expBase * 0.1).reshape(-1, 171)
self.texBase = torch.tensor(model_dict['texBase'], dtype=torch.float32, requires_grad=False, device=self.device)
self.l_eyescale = model_dict['left_eye_exp']
self.r_eyescale = model_dict['right_eye_exp']
self.uv = torch.tensor(model_dict['uv'], dtype=torch.float32, requires_grad=False, device=self.device)
self.tri = torch.tensor(model_dict['tri'], dtype=torch.int64, requires_grad=False, device=self.device)
self.tri_uv = torch.tensor(model_dict['tri_uv'], dtype=torch.int64, requires_grad=False, device=self.device)
self.point_buf = torch.tensor(model_dict['point_buf'], dtype=torch.int64, requires_grad=False, device=self.device)
self.num_vertex = self.meanshape.shape[1] // 3
self.id_dims = self.idBase.shape[1]
self.tex_dims = self.texBase.shape[1]
self.exp_dims = self.expBase.shape[1]
self.all_dims = self.id_dims + self.tex_dims + self.exp_dims
self.init_coeff_tensors()
# for tracking by landmarks
self.kp_inds_view = torch.cat([self.kp_inds[:, None] * 3, self.kp_inds[:, None] * 3 + 1, self.kp_inds[:, None] * 3 + 2], dim=1).flatten()
self.idBase_view = self.idBase[self.kp_inds_view, :].detach().clone()
self.expBase_view = self.expBase[self.kp_inds_view, :].detach().clone()
self.meanshape_view = self.meanshape[:, self.kp_inds_view].detach().clone()
# zxc
self.identity = torch.eye(3, dtype=torch.float32, device=self.device)
self.point_shift = torch.nn.Parameter(torch.zeros(self.num_vertex, 3, dtype=torch.float32, device=self.device)) # [N, 3]
def set_renderer(self, intr=None, img_size=256, cam_dist=10., render_depth=False, rasterize_blur_radius=0.):
self.renderer = ModelRenderer(self.device, intr, img_size, cam_dist, render_depth, rasterize_blur_radius)
def init_coeff_tensors(self, id_coeff=None, tex_coeff=None, exp_coeff=None, gamma_coeff=None, trans_coeff=None, rot_coeff=None, scale_coeff=None, eye_coeff=None):
if id_coeff is None:
self.id_tensor = torch.zeros((1, self.id_dims), dtype=torch.float32, requires_grad=True, device=self.device)
else:
assert id_coeff.shape == (1, self.id_dims)
self.id_tensor = id_coeff.clone().detach().requires_grad_(True)
if tex_coeff is None:
self.tex_tensor = torch.zeros((1, self.tex_dims), dtype=torch.float32, requires_grad=True, device=self.device)
else:
assert tex_coeff.shape == (1, self.tex_dims)
self.tex_tensor = tex_coeff.clone().detach().requires_grad_(True)
if exp_coeff is None:
self.exp_tensor = torch.zeros((self.batch_size, self.exp_dims), dtype=torch.float32, requires_grad=True, device=self.device)
else:
assert exp_coeff.shape == (1, self.exp_dims)
self.exp_tensor = exp_coeff.clone().detach().requires_grad_(True)
if gamma_coeff is None:
self.gamma_tensor = torch.zeros((self.batch_size, 27), dtype=torch.float32, requires_grad=True, device=self.device)
else:
self.gamma_tensor = gamma_coeff.clone().detach().requires_grad_(True)
if trans_coeff is None:
self.trans_tensor = torch.zeros((self.batch_size, 3), dtype=torch.float32, requires_grad=True, device=self.device)
else:
self.trans_tensor = trans_coeff.clone().detach().requires_grad_(True)
if scale_coeff is None:
self.scale_tensor = 1.0 * torch.ones((self.batch_size, 1), dtype=torch.float32, device=self.device)
self.scale_tensor.requires_grad_(True)
else:
self.scale_tensor = scale_coeff.clone().detach().requires_grad_(True)
if rot_coeff is None:
self.rot_tensor = torch.zeros((self.batch_size, 3), dtype=torch.float32, requires_grad=True, device=self.device)
else:
self.rot_tensor = rot_coeff.clone().detach().requires_grad_(True)
if eye_coeff is None:
self.eye_tensor = torch.zeros(
(self.batch_size, 4), dtype=torch.float32,
requires_grad=True, device=self.device)
else:
self.eye_tensor = eye_coeff.clone().detach().requires_grad_(True)
def get_lms(self, vs):
lms = vs[:, self.kp_inds, :]
return lms
def split_coeffs(self, coeffs):
id_coeff = coeffs[:, :self.id_dims] # identity(shape) coeff
exp_coeff = coeffs[:, self.id_dims:self.id_dims + self.exp_dims] # expression coeff
tex_coeff = coeffs[:, self.id_dims + self.exp_dims:self.all_dims] # texture(albedo) coeff
angles = coeffs[:, self.all_dims:self.all_dims + 3] # ruler angles(x,y,z) for rotation of dim 3
gamma = coeffs[:, self.all_dims + 3:self.all_dims + 30] # lighting coeff for 3 channel SH function of dim 27
translation = coeffs[:, self.all_dims + 30:self.all_dims+33] # translation coeff of dim 3
if coeffs.shape[1] == self.all_dims + 36: # 包含scale
eye_coeff = coeffs[:, self.all_dims + 33:] # eye coeff of dim 3
scale = torch.ones_like(coeffs[:, -1:])
else: # 不包含scale
eye_coeff = coeffs[:, self.all_dims + 33:-1] # eye coeff of dim 3
scale = coeffs[:, -1:]
return id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale
def merge_coeffs(self, id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye, scale):
coeffs = torch.cat([id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye, scale], dim=1)
return coeffs
def get_packed_tensors(self):
return self.merge_coeffs(self.id_tensor,
self.exp_tensor,
self.tex_tensor,
self.rot_tensor, self.gamma_tensor,
self.trans_tensor, self.eye_tensor, self.scale_tensor)
# def get_pytorch3d_mesh(self, coeffs, enable_pts_shift=False):
# id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, scale = self.split_coeffs(coeffs)
# rotation = self.compute_rotation_matrix(angles)
#
# vs = self.get_vs(id_coeff, exp_coeff)
# if enable_pts_shift:
# vs = vs + self.point_shift.unsqueeze(0).expand_as(vs)
# vs_t = self.rigid_transform(vs, rotation, translation, torch.abs(scale))
#
# face_texture = self.get_color(tex_coeff)
# face_norm = self.compute_norm(vs, self.tri, self.point_buf)
# face_norm_r = face_norm.bmm(rotation)
# face_color = self.add_illumination(face_texture, face_norm_r, gamma)
#
# face_color_tv = TexturesVertex(face_color)
# mesh = Meshes(vs_t, self.tri.repeat(self.batch_size, 1, 1), face_color_tv)
#
# return mesh
def cal_laplacian_regularization(self, enable_pts_shift):
current_mesh = self.get_pytorch3d_mesh(self.get_packed_tensors(), enable_pts_shift=enable_pts_shift)
disp_reg_loss = mesh_laplacian_smoothing(current_mesh, method="uniform")
return disp_reg_loss
def forward(self, coeffs, render=True, camT=None, enable_pts_shift=False):
id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale = self.split_coeffs(coeffs)
rotation = self.compute_rotation_matrix(angles)
if camT is not None:
rotation2 = camT[:3, :3].permute(1, 0).reshape(1, 3, 3)
translation2 = camT[:3, 3:].permute(1, 0).reshape(1, 1, 3)
if torch.allclose(rotation2, self.identity):
translation = translation + translation2
else:
rotation = torch.matmul(rotation, rotation2)
translation = torch.matmul(translation, rotation2) + translation2
l_eye_mat = self.compute_eye_rotation_matrix(eye_coeff[:, :2])
r_eye_mat = self.compute_eye_rotation_matrix(eye_coeff[:, 2:])
l_eye_mean = self.get_l_eye_center(id_coeff)
r_eye_mean = self.get_r_eye_center(id_coeff)
if render:
vs = self.get_vs(id_coeff, exp_coeff, l_eye_mat, r_eye_mat, l_eye_mean, r_eye_mean)
if enable_pts_shift:
vs = vs + self.point_shift.unsqueeze(0).expand_as(vs)
vs_t = self.rigid_transform(vs, rotation, translation, torch.abs(scale))
lms_t = self.get_lms(vs_t)
lms_proj = self.renderer.project_vs(lms_t)
face_texture = self.get_color(tex_coeff)
face_norm = self.compute_norm(vs, self.tri, self.point_buf)
face_norm_r = face_norm.bmm(rotation)
face_color = self.add_illumination(face_texture, face_norm_r, gamma)
face_color_tv = TexturesVertex(face_color)
mesh = Meshes(vs_t, self.tri.repeat(self.batch_size, 1, 1), face_color_tv)
rendered_img = self.renderer.renderer(mesh)
return {'rendered_img': rendered_img,
'lms_proj': lms_proj,
'face_texture': face_texture,
'vs': vs_t,
'tri': self.tri,
'color': face_color, 'lms_t': lms_t}
else:
lms = self.get_vs_lms(id_coeff, exp_coeff, l_eye_mat, r_eye_mat, l_eye_mean, r_eye_mean)
lms_t = self.rigid_transform(lms, rotation, translation, torch.abs(scale))
lms_proj = self.renderer.project_vs(lms_t)
return {'lms_proj': lms_proj, 'lms_t': lms_t}
def get_vs(self, id_coeff, exp_coeff, l_eye_mat=None, r_eye_mat=None, l_eye_mean=None, r_eye_mean=None):
face_shape = torch.einsum('ij,aj->ai', self.idBase, id_coeff) + \
torch.einsum('ij,aj->ai', self.expBase, exp_coeff) + self.meanshape
face_shape = face_shape.view(self.batch_size, -1, 3)
if l_eye_mat is not None:
face_shape[:, self.ver_inds[0]:self.ver_inds[1]] = torch.matmul(face_shape[:, self.ver_inds[0]:self.ver_inds[1]] - l_eye_mean, l_eye_mat) + l_eye_mean
face_shape[:, self.ver_inds[1]:self.ver_inds[2]] = torch.matmul(face_shape[:, self.ver_inds[1]:self.ver_inds[2]] - r_eye_mean, r_eye_mat) + r_eye_mean
return face_shape
def get_vs_lms(self, id_coeff, exp_coeff, l_eye_mat, r_eye_mat, l_eye_mean, r_eye_mean):
face_shape = torch.einsum('ij,aj->ai', self.idBase_view, id_coeff) + \
torch.einsum('ij,aj->ai', self.expBase_view, exp_coeff) + self.meanshape_view
face_shape = face_shape.view(self.batch_size, -1, 3)
face_shape[:, 473:478] = torch.matmul(face_shape[:, 473:478] - l_eye_mean, l_eye_mat) + l_eye_mean
face_shape[:, 468:473] = torch.matmul(face_shape[:, 468:473] - r_eye_mean, r_eye_mat) + r_eye_mean
return face_shape
def get_l_eye_center(self, id_coeff):
eye_shape = torch.einsum('ij,aj->ai', self.idBase, id_coeff) + self.meanshape
eye_shape = eye_shape.view(self.batch_size, -1, 3)[:, self.ver_inds[0]:self.ver_inds[1]]
eye_shape[:, :, 2] += 0.005
return torch.mean(eye_shape, dim=1, keepdim=True)
def get_r_eye_center(self, id_coeff):
eye_shape = torch.einsum('ij,aj->ai', self.idBase, id_coeff) + self.meanshape
eye_shape = eye_shape.view(self.batch_size, -1, 3)[:, self.ver_inds[1]:self.ver_inds[2]]
eye_shape[:, :, 2] += 0.005
return torch.mean(eye_shape, dim=1, keepdim=True)
def get_color(self, tex_coeff):
face_texture = torch.einsum('ij,aj->ai', self.texBase, tex_coeff) + self.meantex
face_texture = face_texture.view(self.batch_size, -1, 3)
return face_texture
def compute_norm(self, vs, tri, point_buf):
face_id = tri
point_id = point_buf
v1 = vs[:, face_id[:, 0], :]
v2 = vs[:, face_id[:, 1], :]
v3 = vs[:, face_id[:, 2], :]
e1 = v1 - v2
e2 = v2 - v3
face_norm = e1.cross(e2)
v_norm = face_norm[:, point_id, :].sum(2)
v_norm = v_norm / (v_norm.norm(dim=2).unsqueeze(2) + 1e-9)
return v_norm
def project_vs(self, vs):
vs = torch.matmul(vs, self.reverse_z.repeat((self.batch_size, 1, 1))) + self.camera_pos
aug_projection = torch.matmul(vs, self.p_mat.repeat((self.batch_size, 1, 1)).permute((0, 2, 1)))
face_projection = aug_projection[:, :, :2] / torch.reshape(aug_projection[:, :, 2], [self.batch_size, -1, 1])
return face_projection
def make_rotMat(self, coeffes=None, angle=None, translation=None, scale=None, no_scale=False):# P * rot * scale + trans -> P * T
if coeffes is not None:
_, _, _, angle, _, translation, scale = self.split_coeffs(coeffes)
rotation = self.compute_rotation_matrix(angle)
cam_T = torch.eye(4, dtype=torch.float32).to(angle.device)
cam_T[:3, :3] = rotation[0] if no_scale else torch.abs(scale[0]) * rotation[0]
cam_T[-1, :3] = translation[0]
return cam_T
def compute_eye_rotation_matrix(self, eye):
# 0 left_eye + down - up
# 1 left_eye + right - left
# 2 right_eye + down - up
# 3 right_eye + right - left
sinx = torch.sin(eye[:, 0])
siny = torch.sin(eye[:, 1])
cosx = torch.cos(eye[:, 0])
cosy = torch.cos(eye[:, 1])
if self.batch_size != 1:
rotXYZ = self.rotXYZ.repeat(1, self.batch_size, 1, 1).detach().clone()
else:
rotXYZ = self.rotXYZ.detach().clone()
rotXYZ[0, :, 1, 1] = cosx
rotXYZ[0, :, 1, 2] = -sinx
rotXYZ[0, :, 2, 1] = sinx
rotXYZ[0, :, 2, 2] = cosx
rotXYZ[1, :, 0, 0] = cosy
rotXYZ[1, :, 0, 2] = siny
rotXYZ[1, :, 2, 0] = -siny
rotXYZ[1, :, 2, 2] = cosy
rotation = rotXYZ[1].bmm(rotXYZ[0])
return rotation.permute(0, 2, 1)
def compute_rotation_matrix(self, angles):
sinx = torch.sin(angles[:, 0])
siny = torch.sin(angles[:, 1])
sinz = torch.sin(angles[:, 2])
cosx = torch.cos(angles[:, 0])
cosy = torch.cos(angles[:, 1])
cosz = torch.cos(angles[:, 2])
if self.batch_size != 1:
rotXYZ = self.rotXYZ.repeat(1, self.batch_size, 1, 1)
else:
rotXYZ = self.rotXYZ.detach().clone()
rotXYZ[0, :, 1, 1] = cosx
rotXYZ[0, :, 1, 2] = -sinx
rotXYZ[0, :, 2, 1] = sinx
rotXYZ[0, :, 2, 2] = cosx
rotXYZ[1, :, 0, 0] = cosy
rotXYZ[1, :, 0, 2] = siny
rotXYZ[1, :, 2, 0] = -siny
rotXYZ[1, :, 2, 2] = cosy
rotXYZ[2, :, 0, 0] = cosz
rotXYZ[2, :, 0, 1] = -sinz
rotXYZ[2, :, 1, 0] = sinz
rotXYZ[2, :, 1, 1] = cosz
rotation = rotXYZ[2].bmm(rotXYZ[1]).bmm(rotXYZ[0])
return rotation.permute(0, 2, 1)
def add_illumination(self, face_texture, norm, gamma):
gamma = gamma.view(-1, 3, 9).clone()
gamma[:, :, 0] += 0.8
gamma = gamma.permute(0, 2, 1)
a0 = np.pi
a1 = 2 * np.pi / np.sqrt(3.0)
a2 = 2 * np.pi / np.sqrt(8.0)
c0 = 1 / np.sqrt(4 * np.pi)
c1 = np.sqrt(3.0) / np.sqrt(4 * np.pi)
c2 = 3 * np.sqrt(5.0) / np.sqrt(12 * np.pi)
d0 = 0.5 / np.sqrt(3.0)
norm = norm.view(-1, 3)
nx, ny, nz = norm[:, 0], norm[:, 1], norm[:, 2]
arrH = []
arrH.append(a0 * c0 * (nx * 0 + 1))
arrH.append(-a1 * c1 * ny)
arrH.append(a1 * c1 * nz)
arrH.append(-a1 * c1 * nx)
arrH.append(a2 * c2 * nx * ny)
arrH.append(-a2 * c2 * ny * nz)
arrH.append(a2 * c2 * d0 * (3 * nz.pow(2) - 1))
arrH.append(-a2 * c2 * nx * nz)
arrH.append(a2 * c2 * 0.5 * (nx.pow(2) - ny.pow(2)))
H = torch.stack(arrH, 1)
Y = H.view(self.batch_size, face_texture.shape[1], 9)
lighting = Y.bmm(gamma)
face_color = face_texture * lighting
return face_color
def rigid_transform(self, vs, rot, trans, scale):
vs_r = torch.matmul(vs * scale, rot)
vs_t = vs_r + trans.view(-1, 1, 3)
return vs_t
def get_rot_tensor(self):
return self.rot_tensor
def get_trans_tensor(self):
return self.trans_tensor
def get_exp_tensor(self):
return self.exp_tensor
def get_tex_tensor(self):
return self.tex_tensor
def get_id_tensor(self):
return self.id_tensor
def get_gamma_tensor(self):
return self.gamma_tensor
def get_scale_tensor(self):
return self.scale_tensor
class ModelRenderer(nn.Module):
def __init__(self, device='cuda:0', intr=None, img_size=256, cam_dist=10., render_depth=False, rasterize_blur_radius=0.):
super(ModelRenderer, self).__init__()
self.render_depth = render_depth
self.img_size = img_size
self.device = torch.device(device)
self.cam_dist = cam_dist
if intr is None:
intr = np.eye(3, dtype=np.float32)
intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2] = 1315, 1315, img_size // 2, img_size // 2
self.fx, self.fy, self.cx, self.cy = intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2]
self.renderer = self._get_renderer(self.device, cam_dist, torch.from_numpy(intr), render_depth=render_depth, rasterize_blur_radius=rasterize_blur_radius)
self.p_mat = self._get_p_mat(device)
self.reverse_xz = self._get_reverse_xz(device)
self.camera_pos = self._get_camera_pose(device, cam_dist)
def _get_renderer(self, device, cam_dist=10., K=None, render_depth=False, rasterize_blur_radius=0.):
R, T = look_at_view_transform(cam_dist, 0, 0) # camera's position
fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2]
fx = -fx * 2.0 / (self.img_size - 1)
fy = -fy * 2.0 / (self.img_size - 1)
cx = - (cx - (self.img_size - 1) / 2.0) * 2.0 / (self.img_size - 1)
cy = - (cy - (self.img_size - 1) / 2.0) * 2.0 / (self.img_size - 1)
cameras = PerspectiveCameras(device=device, R=R, T=T, focal_length=torch.tensor([[fx, fy]], device=device, dtype=torch.float32),
principal_point=((cx, cy),),
in_ndc=True)
lights = PointLights(device=device, location=[[0.0, 0.0, 1e5]],
ambient_color=[[1, 1, 1]],
specular_color=[[0., 0., 0.]], diffuse_color=[[0., 0., 0.]])
raster_settings = RasterizationSettings(
image_size=self.img_size,
blur_radius=rasterize_blur_radius if render_depth else 0.,
faces_per_pixel=1,
)
blend_params = blending.BlendParams(background_color=[0, 0, 0])
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=SoftPhongShader(
device=device,
cameras=cameras,
lights=lights,
blend_params=blend_params
)
) if not render_depth else \
MeshRendererWithDepth(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=SoftPhongShader(
device=device,
cameras=cameras,
lights=lights,
blend_params=blend_params
)
)
return renderer
def _get_camera_pose(self, device, cam_dist=10.):
camera_pos = torch.tensor([0.0, 0.0, cam_dist], device=device).reshape(1, 1, 3)
return camera_pos
def _get_p_mat(self, device):
# half_image_width = self.img_size // 2
p_matrix = np.array([self.fx, 0.0, self.cx,
0.0, self.fy, self.cy,
0.0, 0.0, 1.0], dtype=np.float32).reshape(1, 3, 3)
return torch.tensor(p_matrix, device=device)
def _get_reverse_xz(self, device):
reverse_z = np.reshape(
np.array([-1.0, 0, 0, 0, 1, 0, 0, 0, -1.0], dtype=np.float32), [1, 3, 3])
return torch.tensor(reverse_z, device=device)
def project_vs(self, vs):
batchsize = vs.shape[0]
vs = torch.matmul(vs, self.reverse_xz.repeat((batchsize, 1, 1))) + self.camera_pos
aug_projection = torch.matmul(
vs, self.p_mat.repeat((batchsize, 1, 1)).permute((0, 2, 1)))
face_projection = aug_projection[:, :, :2] / torch.reshape(aug_projection[:, :, 2], [batchsize, -1, 1])
return face_projection
class MeshRendererWithDepth(MeshRenderer):
def __init__(self, rasterizer, shader):
super().__init__(rasterizer, shader)
def forward(self, meshes_world, **kwargs) -> torch.Tensor:
fragments = self.rasterizer(meshes_world, **kwargs)
images = self.shader(fragments, meshes_world, **kwargs)
return images, fragments.zbuf |