Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,418 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
import os
import sys
import json
import time
import glob
import logging
import argparse
from datetime import datetime
import cv2
import torch
import numpy as np
from tqdm import tqdm
from scipy.ndimage import gaussian_filter1d
from PIL import Image
from natsort import ns, natsorted
from lib.config.config import cfg
from lib.faceverse_process.fit_faceverse import fit_faceverse
from lib.face_detect_ldmk_pipeline import FaceLdmkDetector
from lib.model_builder import make_model
from lib.align_in_the_wild import recreate_aligned_images, recreate_aligned_videos_multiprocessing
from lib.preprocess_faceverse import make_cam_dataset_FFHQ, render_orth_mp
from lib.pdfgc.encoder import FanEncoder
from lib.pdfgc.utils import get_motion_feature
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
def is_image_file(filename):
"""
Check if a file has a common image format extension.
Args:
filename (str): The name or path of the file.
Returns:
bool: True if the file has an image extension (.jpg, .png, etc.), otherwise False.
"""
image_extensions = {".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"}
return os.path.splitext(filename)[1].lower() in image_extensions
def get_images_in_folder(folder_path):
"""
Check if a given folder contains images and return a list of image file names.
Args:
folder_path (str): The path of the folder to check.
Returns:
list: A list of image file names if found, otherwise an empty list.
"""
if not os.path.isdir(folder_path): # Check if the path is a directory
return []
image_files = [file for file in os.listdir(folder_path) if
os.path.isfile(os.path.join(folder_path, file)) and is_image_file(file)]
return image_files # Return a list of image names
def is_video_file(file_path):
video_extensions = {".mp4", ".avi", ".mov", ".mkv", ".flv", ".wmv" }
ext = os.path.splitext(file_path)[1].lower()
return ext in video_extensions
def extract_imgs(input_path, save_dir, skip=1, center_crop=False, res=512, is_video=False, is_img=True):
os.makedirs(save_dir, exist_ok=True)
if is_video and is_video_file(input_path):
videoCapture = cv2.VideoCapture(input_path)
size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
if center_crop:
length = min(size) // 2
top, bottom, left, right = max(0, size[1] // 2 - length), min(size[1], size[1] // 2 + length), max(0, size[
0] // 2 - length), min(size[0], size[0] // 2 + length)
else:
length = max(size) // 2
top, bottom, left, right = max(0, length - size[1] // 2), max(0, length - size[1] // 2), max(0,
length - size[
0] // 2), max(
0, length - size[0] // 2)
count = -1
while True:
flag, frame = videoCapture.read()
count += 1
if not flag:
break
if skip > 1 and not (count % skip == 0):
continue
if center_crop:
crop_frame = frame[top: bottom, left: right]
else:
crop_frame = cv2.copyMakeBorder(frame, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)
if not res == crop_frame.shape[0]:
crop_frame = cv2.resize(crop_frame, dsize=(res, res), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(save_dir, str(count) + '.png'), crop_frame)
videoCapture.release()
logging.info(f"Video frames saved in {save_dir}")
elif is_img:
all_imgs = get_images_in_folder(input_path)
if len(all_imgs) == 0:
raise ValueError("The input file has no images")
else:
count = -1
for image_name in all_imgs:
count += 1
img = cv2.imread(os.path.join(input_path, image_name))
size = (img.shape[1], img.shape[0])
if center_crop:
length = min(size) // 2
top, bottom, left, right = max(0, size[1] // 2 - length), min(size[1], size[1] // 2 + length), max(
0, size[0] // 2 - length), min(size[0], size[0] // 2 + length)
else:
length = max(size) // 2
top, bottom, left, right = max(0, length - size[1] // 2), max(0, length - size[1] // 2), max(0,
length -
size[
0] // 2), max(
0, length - size[0] // 2)
if center_crop:
crop_frame = img[top: bottom, left: right]
else:
crop_frame = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)
if not res == crop_frame.shape[0]:
crop_frame = cv2.resize(crop_frame, dsize=(res, res), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(save_dir, image_name.split('.')[0].replace(" ", "_") + '.png'), crop_frame)
logging.info(f"Images saved in {save_dir}")
else:
raise ValueError("The input file is not a video")
def get_valid_input_idx(input_path, save_dir, is_video, is_img, skip=1):
"""
Extracts images from the input file, organizes them, and creates a JSON file listing valid images.
Args:
input_path (str): Path to the input file (e.g., a video or archive).
save_dir (str): Directory to save extracted images.
skip (int, optional): Step size for selecting images (default: 1).
Returns:
str: Path to the generated JSON file containing valid image names.
"""
# Extract images to a subdirectory named after the input file
raw_imgs_save_dir = os.path.join(save_dir, os.path.splitext(os.path.basename(input_path))[0])
extract_imgs(input_path, raw_imgs_save_dir, is_video=is_video, is_img=is_img)
# Define JSON save path
valid_imgs_json_save_path = os.path.join(save_dir, 'valid_imgs.json')
valid_videos, count, img_nums = [], 0, [0]
# Process subdirectories in `save_dir`
for video_imgs_name in tqdm(os.listdir(save_dir)):
print(video_imgs_name)
video_imgs_dir = os.path.join(save_dir, video_imgs_name)
if not os.path.isdir(video_imgs_dir):
continue
# Collect and sort image files
img_names = natsorted([x for x in os.listdir(video_imgs_dir) if x.endswith((".jpg", ".png", ".webp"))], alg=ns.PATH)
# Store selected images with skip interval
valid_videos.append([video_imgs_name, img_names[::skip]])
count += len(valid_videos[-1][1])
img_nums.append(count)
# Save results to JSON
with open(valid_imgs_json_save_path, 'w') as f:
json.dump(valid_videos, f, indent=4)
return valid_imgs_json_save_path # Return JSON file path
def make_coeff_dataset_FFHQ(tracking_dir, save_dir, smooth=False, is_img=False):
"""
Processes and organizes FaceVerse coefficients into a structured dataset.
Parameters:
tracking_dir (str): Source directory containing tracked coefficient sequences
save_dir (str): Target directory to save processed coefficients
smooth (bool): Apply temporal smoothing to coefficients when True
"""
# Iterate through each sequence directory
for prefix in tqdm(os.listdir(tracking_dir)):
seq_path = os.path.join(tracking_dir, prefix)
# Skip non-directory entries
if not os.path.isdir(seq_path):
continue
# Collect valid frame directories containing 'finish' flag file
frame_dirs = [
name for name in os.listdir(seq_path)
if os.path.exists(os.path.join(seq_path, name, 'finish'))
]
# Sort frames numerically (requires directory names to be integer strings)
if not is_img:
frame_dirs.sort(key=lambda x: int(x))
try:
# Load all coefficient sequences for this sequence
coeff_seq = np.stack([
np.load(os.path.join(seq_path, fname, 'coeffs.npy'))
for fname in frame_dirs
], axis=0) # Shape: [num_frames, num_coeffs]
# Apply temporal smoothing if enabled
if smooth:
# Gaussian filter with σ=0.5 across time dimension
coeff_seq = gaussian_filter1d(coeff_seq, sigma=0.5, axis=0)
# Create output directory structure
output_seq_dir = os.path.join(save_dir, prefix)
os.makedirs(output_seq_dir, exist_ok=True)
# Save processed coefficients per frame
for idx, fname in enumerate(frame_dirs):
output_path = os.path.join(output_seq_dir, fname + '.npy')
np.save(output_path, coeff_seq[idx])
except Exception as e:
# Note: Consider adding error logging in production code
# print(f"Skipping sequence {prefix} due to error: {str(e)}")
continue
class Process(object):
def __init__(self, cfg):
self.cfg = cfg
self.net_fd, self.net_ldmk, self.net_ldmk_3d = make_model(self.cfg)
self.net_fd.cuda()
self.net_ldmk.cuda()
self.net_ldmk_3d.cuda()
pd_fgc = FanEncoder()
weight_dict = torch.load(cfg.pdfgc_path)
pd_fgc.load_state_dict(weight_dict, strict=False)
pd_fgc = pd_fgc.eval().cuda()
self.pd_fgc = pd_fgc
### set eval and freeze models
self.net_fd.eval()
self.net_ldmk.eval()
self.net_ldmk_3d.eval()
self.stand_index = np.array([96, 97, 54, 76, 82])
self.fd_ldmk_detector = FaceLdmkDetector(self.net_fd, self.net_ldmk, self.net_ldmk_3d)
def get_faceverse_labels_FFHQ(self, tracking_dir, root_dir, fv2fl_T_path='lib/FaceVerse/v3/fv2fl_30.npy',
focal=4.2647, need_render=False,
save_uv=True, save_mesh=False, save_name=None, render_normal_uv=False,
num_thread=1, use_smooth=False, test_data=False, skip=False, is_img=False):
"""
Processes FaceVerse tracking data to generate dataset labels for FFHQ-style datasets.
Parameters:
tracking_dir (str): Path to directory containing FaceVerse tracking data
root_dir (str): Root directory for dataset outputs
fv2fl_T_path (str): Path to FaceVerse-to-FLAME transformation matrix
focal (float): Camera focal length
need_render (bool): Whether to render visualizations
save_uv (bool): Save UV texture maps if True
save_mesh (bool): Save 3D meshes if True
save_name (str): Custom name for output directory
render_normal_uv (bool): Render normal maps in UV space if True
num_thread (int): Number of parallel processing threads
use_smooth (bool): Apply temporal smoothing to coefficients if True
test_data (bool): Process as test data with different output structure if True
skip (bool): Skip existing files if True
"""
# Setup base directories
save_dir = os.path.join(root_dir, 'dataset')
os.makedirs(save_dir, exist_ok=True)
# Load FaceVerse to FLAME transformation matrix
fv2fl_T = np.load(fv2fl_T_path).astype(np.float32)
# Coordinate transformation parameters
orth_scale = 5.00 # Orthographic projection scaling factor
orth_shift = np.array([0, 0.005, 0.], dtype=np.float32) # Coordinate shift
box_warp = 2.0 # Normalization scaling factor
# Path configurations
face_model_dir = 'lib/FaceVerse/v3' # Pre-trained FaceVerse model
save_render_dir = os.path.join(save_dir, 'orthRender256x256_face_eye' if save_name is None else save_name)
save_mesh_dir = os.path.join(save_dir, 'FVmeshes512x512') if save_mesh else None
save_uv_dir = os.path.join(save_dir, 'uvRender256x256') if save_uv else None
# Render orthographic projections and process geometry
render_orth_mp(
tracking_dir,
save_render_dir,
face_model_dir,
fv2fl_T,
{'scale': orth_scale, 'shift': orth_shift},
focal,
render_vis=need_render,
save_mesh_dir=save_mesh_dir,
save_uv_dir=save_uv_dir,
render_normal_uv=render_normal_uv,
skip=skip,
num_thread=num_thread,
crop_param=[128, 114, 256, 256], # Crop parameters: x_offset, y_offset, width, height
save_coeff=True
)
# Compute normalization transformation matrix
normalizeFL_T = np.eye(4, dtype=np.float32)
scale_T = (orth_scale / box_warp) * np.eye(3, dtype=np.float32) # Scaling component
shift_T = scale_T.dot(orth_shift.reshape(3, 1)) # Translation component
normalizeFL_T[:3, :3], normalizeFL_T[:3, 3:] = scale_T, shift_T
# Update FaceVerse to FLAME transformation with normalization
fv2fl_T = np.dot(normalizeFL_T, fv2fl_T)
# Generate camera parameters dataset
cam_params, cond_cam_params, fv_exp_eye_params = make_cam_dataset_FFHQ(
tracking_dir, fv2fl_T, focal, test_data=test_data
)
# Handle different output structures for test vs training data
if test_data:
# Save per-sequence camera parameters
for prefix in cam_params.keys():
save_json_name = f'dataset_{prefix}_realcam.json'
output_path = os.path.join(save_dir, 'images512x512', save_json_name)
with open(output_path, "w") as f:
json.dump({"labels": cam_params[prefix]}, f, indent=4)
else:
# Save unified camera parameters with optional temporal smoothing
save_json_name = 'dataset_realcam.json'
if use_smooth:
smoothed_params = []
# Process each subdirectory sequence
for sub_name in os.listdir(os.path.join(save_dir, 'images512x512')):
sub_path = os.path.join(save_dir, 'images512x512', sub_name)
if not os.path.isdir(sub_path):
continue
# Extract and sort sequence frames
sub_json = [case for case in cam_params if case[0].split('/')[0] == sub_name]
sub_json.sort(key=lambda x: int(x[0].split('/')[1].split('.')[0]))
# Apply Gaussian smoothing to coefficients
coeff_seq = np.array([x[1] for x in sub_json], dtype=np.float32)
coeff_seq = gaussian_filter1d(coeff_seq, sigma=1.5, axis=0)
# Rebuild parameter list with smoothed coefficients
smoothed_params.extend([
[x[0], coeff_seq[idx].tolist()]
for idx, x in enumerate(sub_json)
])
cam_params = smoothed_params
# Save final parameters
output_path = os.path.join(save_dir, 'images512x512', save_json_name)
with open(output_path, "w") as f:
json.dump({"labels": cam_params}, f, indent=4)
# Generate final coefficient dataset
make_coeff_dataset_FFHQ(tracking_dir, os.path.join(save_dir, 'coeffs'), smooth=use_smooth, is_img=is_img)
def get_landmarks(self, imgs_root, save_dir, valid_imgs_json, skip=False, is_img=False):
self.fd_ldmk_detector.reset()
out_detection = save_dir
os.makedirs(out_detection, exist_ok=True)
valid_idx = json.loads(open(valid_imgs_json).read())
no_face_log = []
for vidx, (video_name, imgs) in enumerate(valid_idx):
if skip and os.path.exists(os.path.join(out_detection, video_name + '.json')):
continue
bar = tqdm(imgs)
save_kps = dict()
save_kps_3d = dict()
for img_name in bar:
bar.set_description('%d/%d: %s' % (vidx, len(valid_idx), video_name))
img_path = os.path.join(imgs_root, video_name, img_name)
img = cv2.imread(img_path)
with torch.no_grad():
try:
ldmks, ldmks_3d, boxes = self.fd_ldmk_detector.inference(img)
except Exception as e:
self.fd_ldmk_detector.reset()
logging.error(f"Error during inference: {e}") # Error log
no_face_log.append([video_name, img_name])
continue
if is_img:
self.fd_ldmk_detector.reset()
# default the first one face
keypoints = ldmks[0, self.stand_index]
ldmks_3d = ldmks_3d[0]
kps = [[float(int(keypoints[0][0])), float(int(keypoints[0][1]))],
[float(int(keypoints[1][0])), float(int(keypoints[1][1]))],
[float(int(keypoints[2][0])), float(int(keypoints[2][1]))],
[float(int(keypoints[3][0])), float(int(keypoints[3][1]))],
[float(int(keypoints[4][0])), float(int(keypoints[4][1]))]
]
save_kps[img_name] = kps
save_kps_3d[img_name] = ldmks_3d.tolist()
logging.info(f"landmarks: {os.path.join(out_detection, video_name + '.json')}")
with open(os.path.join(out_detection, video_name + '.json'), 'w') as f:
f.write(json.dumps(save_kps, indent=4))
with open(os.path.join(out_detection, video_name + '3d.json'), 'w') as f:
f.write(json.dumps(save_kps_3d, indent=4))
if len(no_face_log) > 0:
jstr = json.dumps(no_face_log, indent=4)
with open(os.path.join(out_detection, str(datetime.now()) + '_total_no_face_log.json'), 'w') as f:
f.write(jstr)
self.fd_ldmk_detector.reset()
def get_pdfgc(self, input_imgs_dir, input_ldm3d_dir, motion_save_base_dir):
all_items = os.listdir(input_ldm3d_dir)
folders = [item for item in all_items if os.path.isdir(os.path.join(input_ldm3d_dir, item))]
with torch.no_grad():
for file_name in folders:
motion_save_dir = os.path.join(motion_save_base_dir, file_name)
os.makedirs(motion_save_dir, exist_ok=True)
img_list = sorted(
[f for f in os.listdir(os.path.join(input_imgs_dir, file_name))
if os.path.splitext(f)[-1].lower() in {'.jpg', '.jpeg', '.png', '.bmp', '.gif'}]
)
for img_name in img_list:
img_dir = os.path.join(input_imgs_dir, file_name, img_name)
lmks_dir = os.path.join(input_ldm3d_dir, file_name,
img_name.replace('.png', '.npy').replace('.jpg', '.npy').replace('.jpeg',
'.npy'))
img = np.array(Image.open(img_dir))
img = torch.from_numpy((img.astype(np.float32) / 127.5 - 1)).cuda()
img = img.permute([2, 0, 1]).unsqueeze(0)
lmks = torch.from_numpy(np.load(lmks_dir)).cuda().unsqueeze(0)
motion = get_motion_feature(self.pd_fgc, img, lmks).squeeze(0).cpu().numpy()
np.save(os.path.join(motion_save_dir, img_name.replace('.png', '.npy').replace('.jpg', '.npy')),
motion)
def get_faceverse(self, save_dir, save_tracking_dir, is_img):
fit_faceverse(save_dir, save_tracking_dir, is_img=is_img)
def clean_labels(self, tracking_dir, labels_path, final_label_path):
"""
Filter out labels containing frames with no detected faces
Args:
tracking_dir: Path to directory containing no-face detection logs
labels_path: Path to original labels JSON file
final_path: Output path for cleaned labels JSON
"""
# Initialize collection of frames with no faces
no_face_entries = []
# Load all no-face detection logs
for log_file in os.listdir(tracking_dir):
if not log_file.endswith("_total_no_face_log.json"):
continue
with open(os.path.join(tracking_dir, log_file)) as f:
no_face_entries.extend(json.load(f))
# Load original labels and extract filenames
with open(labels_path) as f:
original_labels = json.load(f)['labels']
label_filenames = [label[0] for label in original_labels]
# Identify frames to exclude
excluded_frames = set()
for entry in no_face_entries:
# Extract video and frame names from log entry path
path_parts = entry[1].split('/')
video_name = path_parts[-2]
frame_name = path_parts[-1]
composite_key = f"{video_name}/{frame_name}"
logging.debug(f"Processing no-face entry: {composite_key}")
if composite_key in label_filenames:
excluded_frames.add(frame_name)
logging.info(f"Identified {len(excluded_frames)} frames to exclude")
# Filter out excluded frames from labels
cleaned_labels = []
for label in tqdm(original_labels, desc="Filtering labels"):
# Label format: "video_name/frame_name"
frame_id = label[0].split('/')[1]
if frame_id not in excluded_frames:
cleaned_labels.append(label)
# Save cleaned labels
logging.info(f"Original labels: {len(original_labels)}, Cleaned labels: {len(cleaned_labels)}")
with open(final_label_path, 'w') as f:
json.dump({'labels': cleaned_labels}, f, indent=4)
def inference(self, input_dir, save_dir, is_video=True, is_img=False, smooth_cropping_mode=3.0,
no_extract_frames=False, no_extract_landmarks=False, no_align=False,
no_fitting_faceverse=False, no_render_faceverse=False, already_align=False, no_pdfgc_motion=False):
"""
End-to-end processing pipeline for facial analysis and reconstruction.
Parameters:
input_dir (str): Source directory containing input videos/images
save_dir (str): Root directory for all processed outputs
is_video (bool): True when processing video files
is_img (bool): True when processing image sequences
smooth_cropping_mode (float): Smoothing strength for video frame alignment
no_extract_frames (bool): Extract frames from video if True
no_extract_landmarks (bool): Detect facial landmarks if True
no_align (bool): Align and crop face regions if True
no_fitting_faceverse (bool): Fit FaceVerse model if True
no_render_faceverse (bool): Render FaceVerse outputs if True
"""
# Initialize directory paths
motions_save_dir = os.path.join(save_dir, 'dataset', "motions")
data_save_dir = os.path.join(save_dir, 'dataset', "images512x512") # Final processed images
raw_detection_dir = os.path.join(save_dir, "raw_detections") # Landmark detection results
save_tracking_dir = os.path.join(save_dir, 'crop_fv_tracking') # FaceVerse tracking data
indir = os.path.join(save_dir, 'raw_frames') # Raw extracted frames
aligned3d_save_dir = os.path.join(save_dir, 'align_3d_landmark')
# --- Frame Extraction Stage ---
if not no_extract_frames:
logging.info("Extracting frames from input source")
valid_imgs_json = get_valid_input_idx(
input_dir,
indir,
is_video=is_video,
is_img=is_img,
skip=1 # Frame sampling interval
)
logging.info(f"Frame extraction complete. Results in {indir}")
else:
valid_imgs_json = os.path.join(indir, 'valid_imgs.json')
logging.info(f"Using pre-extracted frames from {indir}")
# --- Landmark Detection Stage ---
if not no_extract_landmarks:
logging.info("Performing facial landmark detection")
self.get_landmarks(indir, raw_detection_dir, valid_imgs_json, is_img=is_img)
logging.info(f"Landmark detection complete. Results in {raw_detection_dir}")
else:
logging.info(f"Using pre-computed landmarks from {raw_detection_dir}")
# --- Face Alignment Stage ---
if not no_align:
logging.info("Aligning and cropping face regions")
if is_video:
# Video processing with temporal smoothing
recreate_aligned_videos_multiprocessing(
indir,
raw_detection_dir,
data_save_dir,
valid_imgs_json,
apply_GF=smooth_cropping_mode # Gaussian filtering strength
)
elif is_img:
# Image sequence processing
recreate_aligned_images(
indir,
raw_detection_dir,
data_save_dir,
already_align=already_align,
valid_imgs_json=valid_imgs_json
)
else:
raise ValueError("Invalid input type - must be video or image sequence")
logging.info(f"Alignment complete. Results in {data_save_dir}")
else:
logging.info(f"Using pre-aligned images from {data_save_dir}")
if not no_pdfgc_motion:
logging.info("Getting the pdfgc motions")
self.get_pdfgc(data_save_dir, aligned3d_save_dir, motions_save_dir)
logging.info(f"Alignment complete. Results in {motions_save_dir}")
else:
logging.info(f"Using pre-aligned images from {motions_save_dir}")
# --- FaceVerse Model Fitting Stage ---
if not no_fitting_faceverse:
logging.info("Fitting FaceVerse 3D face model")
self.get_faceverse(
data_save_dir,
save_tracking_dir,
is_img # Different processing for images vs video
)
logging.info(f"FaceVerse fitting complete. Results in {save_tracking_dir}")
else:
logging.info(f"Using pre-computed FaceVerse fits from {save_tracking_dir}")
# --- Rendering and Final Output Stage ---
if not no_render_faceverse:
logging.info("Generating FaceVerse renders and camera parameters")
self.get_faceverse_labels_FFHQ(
save_tracking_dir,
save_dir,
is_img=is_img
)
logging.info("Rendering and label generation complete")
else:
logging.info("Skipping final rendering stage")
if is_video:
logging.info("Clean labels")
self.clean_labels(save_tracking_dir, os.path.join(data_save_dir, 'dataset_realcam.json'),
os.path.join(data_save_dir, 'dataset_realcam_clean.json'))
def main():
os.makedirs(cfg.save_dir, exist_ok=True)
process = Process(cfg)
process.inference(cfg.input_dir, cfg.save_dir, is_video=cfg.is_video, is_img=cfg.is_img,
no_extract_frames=cfg.no_extract_frames, no_extract_landmarks=cfg.no_extract_landmarks,
no_align=cfg.no_align,
no_fitting_faceverse=cfg.no_fitting_faceverse, no_render_faceverse=cfg.no_render_faceverse,
already_align=cfg.already_align, no_pdfgc_motion=cfg.no_pdfgc_motion)
if __name__ == "__main__":
import torch.multiprocessing as mp
mp.set_start_method('spawn', force=True)
main()
|