Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,502 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import argparse
import math
import os
import sys
current_path = os.path.abspath(__file__)
father_path = os.path.abspath(os.path.dirname(current_path) + os.path.sep + ".")
sys.path.append((os.path.join(father_path, 'Next3d')))
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import torch
import logging
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import inspect
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
import dnnlib
from diffusers.optimization import get_scheduler
from tqdm.auto import tqdm
from vae.triplane_vae import AutoencoderKL, AutoencoderKLRollOut
from vae.data.dataset_online_vae import TriplaneDataset
from einops import rearrange
from vae.utils.common_utils import instantiate_from_config
from Next3d.training_avatar_texture.triplane_generation import TriPlaneGenerator
import Next3d.legacy as legacy
from torch_utils import misc
import datetime
logger = get_logger(__name__, log_level="INFO")
def collate_fn(data):
model_names = [example["data_model_name"] for example in data]
zs = torch.cat([example["data_z"] for example in data], dim=0)
verts = torch.cat([example["data_vert"] for example in data], dim=0)
return {
'model_names': model_names,
'zs': zs,
'verts': verts
}
def rollout_fn(triplane):
triplane = rearrange(triplane, "b c f h w -> b f c h w")
b, f, c, h, w = triplane.shape
triplane = triplane.permute(0, 2, 3, 1, 4).reshape(-1, c, h, f * w)
return triplane
def unrollout_fn(triplane):
res = triplane.shape[-2]
ch = triplane.shape[1]
triplane = triplane.reshape(-1, ch // 3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, 3, ch, res, res)
triplane = rearrange(triplane, "b f c h w -> b c f h w")
return triplane
def triplane_generate(G_model, z, conditioning_params, std, mean, truncation_psi=0.7, truncation_cutoff=14):
w = G_model.mapping(z, conditioning_params, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff)
triplane = G_model.synthesis(w, noise_mode='const')
triplane = (triplane - mean) / std
return triplane
def gan_model(gan_models, device, gan_model_base_dir):
gan_model_dict = gan_models
gan_model_load = {}
for model_name in gan_model_dict.keys():
model_pkl = os.path.join(gan_model_base_dir, model_name + '.pkl')
with dnnlib.util.open_url(model_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
G_new = TriPlaneGenerator(*G.init_args, **G.init_kwargs).eval().requires_grad_(False).to(device)
misc.copy_params_and_buffers(G, G_new, require_all=True)
G_new.neural_rendering_resolution = G.neural_rendering_resolution
G_new.rendering_kwargs = G.rendering_kwargs
gan_model_load[model_name] = G_new
return gan_model_load
def main(vae_config: str,
gan_model_config: str,
output_dir: str,
std_dir: str,
mean_dir: str,
conditioning_params_dir: str,
gan_model_base_dir: str,
train_data: Dict,
train_batch_size: int = 2,
max_train_steps: int = 500,
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_scheduler: str = "constant",
lr_warmup_steps: int = 0,
adam_beta1: float = 0.5,
adam_beta2: float = 0.9,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = True,
checkpointing_steps: int = 500,
pretrained_model_path_zero123: str = None,
resume_from_checkpoint: Optional[str] = None,
mixed_precision: Optional[str] = "fp16",
use_8bit_adam: bool = False,
rollout: bool = False,
enable_xformers_memory_efficient_attention: bool = True,
seed: Optional[int] = None, ):
*_, config = inspect.getargvalues(inspect.currentframe())
base_dir = output_dir
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
# If passed along, set the training seed now.
if seed is not None:
set_seed(seed)
if accelerator.is_main_process:
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
output_dir = os.path.join(output_dir, now)
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
config_vae = OmegaConf.load(vae_config)
if rollout:
vae = AutoencoderKLRollOut(ddconfig=config_vae['ddconfig'], lossconfig=config_vae['lossconfig'], embed_dim=8)
else:
vae = AutoencoderKL(ddconfig=config_vae['ddconfig'], lossconfig=config_vae['lossconfig'], embed_dim=8)
print(f"VAE total params = {len(list(vae.named_parameters()))} ")
if 'perceptual_weight' in config_vae['lossconfig']['params'].keys():
config_vae['lossconfig']['params']['device'] = str(accelerator.device)
loss_fn = instantiate_from_config(config_vae['lossconfig'])
conditioning_params = torch.load(conditioning_params_dir).to(str(accelerator.device))
data_std = torch.load(std_dir).to(str(accelerator.device)).reshape(1, -1, 1, 1, 1)
data_mean = torch.load(mean_dir).to(str(accelerator.device)).reshape(1, -1, 1, 1, 1)
# define the gan model
print("########## gan model load ##########")
config_gan_model = OmegaConf.load(gan_model_config)
gan_model_all = gan_model(config_gan_model['gan_models'], str(accelerator.device), gan_model_base_dir)
print("########## gan model loaded ##########")
if scale_lr:
learning_rate = (
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
vae.parameters(),
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
train_dataset = TriplaneDataset(**train_data)
# Preprocessing the dataset
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, collate_fn=collate_fn, shuffle=True, num_workers=2
)
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
vae, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
vae, optimizer, train_dataloader, lr_scheduler
)
weight_dtype = torch.float32
# Move text_encode and vae to gpu and cast to weight_dtype
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=weight_dtype)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("trainvae", config=vars(args))
# Train!
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
path = os.path.basename(resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1]
accelerator.print(f"Resuming from checkpoint {path}")
if resume_from_checkpoint != "latest":
accelerator.load_state(resume_from_checkpoint)
else:
accelerator.load_state(os.path.join(output_dir, path))
global_step = int(path.split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
resume_step = global_step % num_update_steps_per_epoch
else:
all_final_training_dirs = []
dirs = os.listdir(base_dir)
if len(dirs) != 0:
dirs = [d for d in dirs if d.startswith("2024")] # specific years
if len(dirs) != 0:
base_resume_paths = [os.path.join(base_dir, d) for d in dirs]
for base_resume_path in base_resume_paths:
checkpoint_file_names = os.listdir(base_resume_path)
checkpoint_file_names = [d for d in checkpoint_file_names if d.startswith("checkpoint")]
if len(checkpoint_file_names) != 0:
for checkpoint_file_name in checkpoint_file_names:
final_training_dir = os.path.join(base_resume_path, checkpoint_file_name)
all_final_training_dirs.append(final_training_dir)
if len(all_final_training_dirs) != 0:
sorted_all_final_training_dirs = sorted(all_final_training_dirs, key=lambda x: int(x.split("-")[1]))
latest_dir = sorted_all_final_training_dirs[-1]
path = os.path.basename( latest_dir)
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(latest_dir)
global_step = int(path.split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
resume_step = global_step % num_update_steps_per_epoch
else:
accelerator.print(f"Training from start")
else:
accelerator.print(f"Training from start")
else:
accelerator.print(f"Training from start")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
for epoch in range(first_epoch, num_train_epochs):
vae.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
# if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
# print(epoch)
# print(first_epoch)
# print(step)
# if step % gradient_accumulation_steps == 0:
# progress_bar.update(1)
# continue
with accelerator.accumulate(vae):
# Convert images to latent space
z_values = batch["zs"].to(weight_dtype)
model_names = batch["model_names"]
triplane_values = []
with torch.no_grad():
for z_id in range(z_values.shape[0]):
z_value = z_values[z_id].unsqueeze(0)
model_name = model_names[z_id]
triplane_value = triplane_generate(gan_model_all[model_name], z_value,
conditioning_params, data_std, data_mean)
triplane_values.append(triplane_value)
triplane_values = torch.cat(triplane_values, dim=0)
vert_values = batch["verts"].to(weight_dtype)
triplane_values = rearrange(triplane_values, "b f c h w -> b c f h w")
if rollout:
triplane_values_roll = rollout_fn(triplane_values.clone())
reconstructions, posterior = vae(triplane_values_roll)
reconstructions_unroll = unrollout_fn(reconstructions)
loss, log_dict_ae = loss_fn(triplane_values, reconstructions_unroll, posterior, vert_values,
split="train")
else:
reconstructions, posterior = vae(triplane_values)
loss, log_dict_ae = loss_fn(triplane_values, reconstructions, posterior, vert_values,
split="train")
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(vae.parameters(), max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
# logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
logs = log_dict_ae
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= max_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/triplane_vae.yaml")
args = parser.parse_args()
main(**OmegaConf.load(args.config))
|