File size: 15,502 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import argparse
import math
import os

import sys

current_path = os.path.abspath(__file__)
father_path = os.path.abspath(os.path.dirname(current_path) + os.path.sep + ".")
sys.path.append((os.path.join(father_path, 'Next3d')))

from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import torch
import logging
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import inspect
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
import dnnlib
from diffusers.optimization import get_scheduler
from tqdm.auto import tqdm
from vae.triplane_vae import AutoencoderKL, AutoencoderKLRollOut
from vae.data.dataset_online_vae import TriplaneDataset
from einops import rearrange
from vae.utils.common_utils import instantiate_from_config
from Next3d.training_avatar_texture.triplane_generation import TriPlaneGenerator
import Next3d.legacy as legacy

from torch_utils import misc
import datetime

logger = get_logger(__name__, log_level="INFO")


def collate_fn(data):
    model_names = [example["data_model_name"] for example in data]
    zs = torch.cat([example["data_z"] for example in data], dim=0)
    verts = torch.cat([example["data_vert"] for example in data], dim=0)

    return {
        'model_names': model_names,
        'zs': zs,
        'verts': verts
    }


def rollout_fn(triplane):
    triplane = rearrange(triplane, "b c f h w -> b f c h w")
    b, f, c, h, w = triplane.shape
    triplane = triplane.permute(0, 2, 3, 1, 4).reshape(-1, c, h, f * w)
    return triplane


def unrollout_fn(triplane):
    res = triplane.shape[-2]
    ch = triplane.shape[1]
    triplane = triplane.reshape(-1, ch // 3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, 3, ch, res, res)
    triplane = rearrange(triplane, "b f c h w -> b c f h w")
    return triplane


def triplane_generate(G_model, z, conditioning_params, std, mean, truncation_psi=0.7, truncation_cutoff=14):
    w = G_model.mapping(z, conditioning_params, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff)
    triplane = G_model.synthesis(w, noise_mode='const')
    triplane = (triplane - mean) / std
    return triplane


def gan_model(gan_models, device, gan_model_base_dir):
    gan_model_dict = gan_models
    gan_model_load = {}
    for model_name in gan_model_dict.keys():
        model_pkl = os.path.join(gan_model_base_dir, model_name + '.pkl')
        with dnnlib.util.open_url(model_pkl) as f:
            G = legacy.load_network_pkl(f)['G_ema'].to(device)  # type: ignore
        G_new = TriPlaneGenerator(*G.init_args, **G.init_kwargs).eval().requires_grad_(False).to(device)
        misc.copy_params_and_buffers(G, G_new, require_all=True)
        G_new.neural_rendering_resolution = G.neural_rendering_resolution
        G_new.rendering_kwargs = G.rendering_kwargs
        gan_model_load[model_name] = G_new
    return gan_model_load


def main(vae_config: str,
         gan_model_config: str,
         output_dir: str,
         std_dir: str,
         mean_dir: str,
         conditioning_params_dir: str,
         gan_model_base_dir: str,
         train_data: Dict,
         train_batch_size: int = 2,
         max_train_steps: int = 500,
         learning_rate: float = 3e-5,
         scale_lr: bool = False,
         lr_scheduler: str = "constant",
         lr_warmup_steps: int = 0,
         adam_beta1: float = 0.5,
         adam_beta2: float = 0.9,
         adam_weight_decay: float = 1e-2,
         adam_epsilon: float = 1e-08,
         max_grad_norm: float = 1.0,
         gradient_accumulation_steps: int = 1,
         gradient_checkpointing: bool = True,
         checkpointing_steps: int = 500,
         pretrained_model_path_zero123: str = None,
         resume_from_checkpoint: Optional[str] = None,
         mixed_precision: Optional[str] = "fp16",
         use_8bit_adam: bool = False,
         rollout: bool = False,
         enable_xformers_memory_efficient_attention: bool = True,
         seed: Optional[int] = None, ):
    *_, config = inspect.getargvalues(inspect.currentframe())
    base_dir = output_dir

    accelerator = Accelerator(
        gradient_accumulation_steps=gradient_accumulation_steps,
        mixed_precision=mixed_precision,
    )
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    # If passed along, set the training seed now.
    if seed is not None:
        set_seed(seed)
    if accelerator.is_main_process:
        now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
        output_dir = os.path.join(output_dir, now)
        os.makedirs(output_dir, exist_ok=True)
        os.makedirs(f"{output_dir}/samples", exist_ok=True)
        os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
        OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))

    config_vae = OmegaConf.load(vae_config)

    if rollout:
        vae = AutoencoderKLRollOut(ddconfig=config_vae['ddconfig'], lossconfig=config_vae['lossconfig'], embed_dim=8)

    else:
        vae = AutoencoderKL(ddconfig=config_vae['ddconfig'], lossconfig=config_vae['lossconfig'], embed_dim=8)
    print(f"VAE total params = {len(list(vae.named_parameters()))} ")
    if 'perceptual_weight' in config_vae['lossconfig']['params'].keys():
        config_vae['lossconfig']['params']['device'] = str(accelerator.device)
    loss_fn = instantiate_from_config(config_vae['lossconfig'])
    conditioning_params = torch.load(conditioning_params_dir).to(str(accelerator.device))
    data_std = torch.load(std_dir).to(str(accelerator.device)).reshape(1, -1, 1, 1, 1)

    data_mean = torch.load(mean_dir).to(str(accelerator.device)).reshape(1, -1, 1, 1, 1)

    # define the gan model
    print("########## gan model load ##########")
    config_gan_model = OmegaConf.load(gan_model_config)
    gan_model_all = gan_model(config_gan_model['gan_models'], str(accelerator.device), gan_model_base_dir)
    print("########## gan model loaded ##########")
    if scale_lr:
        learning_rate = (
                learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    optimizer = optimizer_cls(
        vae.parameters(),
        lr=learning_rate,
        betas=(adam_beta1, adam_beta2),
        weight_decay=adam_weight_decay,
        eps=adam_epsilon,
    )

    train_dataset = TriplaneDataset(**train_data)

    # Preprocessing the dataset

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=train_batch_size, collate_fn=collate_fn, shuffle=True, num_workers=2
    )

    lr_scheduler = get_scheduler(
        lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
        num_training_steps=max_train_steps * gradient_accumulation_steps,
    )

    vae, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        vae, optimizer, train_dataloader, lr_scheduler
    )

    weight_dtype = torch.float32

    # Move text_encode and vae to gpu and cast to weight_dtype

    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    vae.to(accelerator.device, dtype=weight_dtype)
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
    # Afterwards we recalculate our number of training epochs
    num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("trainvae", config=vars(args))

    # Train!
    total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if resume_from_checkpoint:
        if resume_from_checkpoint != "latest":
            path = os.path.basename(resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        if resume_from_checkpoint != "latest":
            accelerator.load_state(resume_from_checkpoint)
        else:
            accelerator.load_state(os.path.join(output_dir, path))

        global_step = int(path.split("-")[1])

        first_epoch = global_step // num_update_steps_per_epoch
        resume_step = global_step % num_update_steps_per_epoch
    else:
        all_final_training_dirs = []
        dirs = os.listdir(base_dir)
        if len(dirs) != 0:
            dirs = [d for d in dirs if d.startswith("2024")]  # specific years
            if len(dirs) != 0:
                base_resume_paths = [os.path.join(base_dir, d) for d in dirs]
                for base_resume_path in base_resume_paths:
                    checkpoint_file_names = os.listdir(base_resume_path)
                    checkpoint_file_names = [d for d in checkpoint_file_names if d.startswith("checkpoint")]
                    if len(checkpoint_file_names) != 0:
                        for checkpoint_file_name in checkpoint_file_names:
                            final_training_dir = os.path.join(base_resume_path, checkpoint_file_name)
                            all_final_training_dirs.append(final_training_dir)
                if len(all_final_training_dirs) != 0:
                    sorted_all_final_training_dirs = sorted(all_final_training_dirs, key=lambda x: int(x.split("-")[1]))
                    latest_dir = sorted_all_final_training_dirs[-1]
                    path = os.path.basename( latest_dir)
                    accelerator.print(f"Resuming from checkpoint {path}")
                    accelerator.load_state(latest_dir)
                    global_step = int(path.split("-")[1])

                    first_epoch = global_step // num_update_steps_per_epoch
                    resume_step = global_step % num_update_steps_per_epoch
                else:
                    accelerator.print(f"Training from start")
            else:
                accelerator.print(f"Training from start")
        else:
            accelerator.print(f"Training from start")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
    progress_bar.set_description("Steps")

    for epoch in range(first_epoch, num_train_epochs):
        vae.train()
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            # if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
            #     print(epoch)
            #     print(first_epoch)
            #     print(step)
            #     if step % gradient_accumulation_steps == 0:
            #         progress_bar.update(1)
            #     continue
            with accelerator.accumulate(vae):
                # Convert images to latent space
                z_values = batch["zs"].to(weight_dtype)
                model_names = batch["model_names"]

                triplane_values = []
                with torch.no_grad():
                    for z_id in range(z_values.shape[0]):
                        z_value = z_values[z_id].unsqueeze(0)
                        model_name = model_names[z_id]
                        triplane_value = triplane_generate(gan_model_all[model_name], z_value,
                                                           conditioning_params, data_std, data_mean)
                        triplane_values.append(triplane_value)
                triplane_values = torch.cat(triplane_values, dim=0)
                vert_values = batch["verts"].to(weight_dtype)
                triplane_values = rearrange(triplane_values, "b f c h w -> b c f h w")
                if rollout:
                    triplane_values_roll = rollout_fn(triplane_values.clone())
                    reconstructions, posterior = vae(triplane_values_roll)
                    reconstructions_unroll = unrollout_fn(reconstructions)
                    loss, log_dict_ae = loss_fn(triplane_values, reconstructions_unroll, posterior, vert_values,
                                                split="train")
                else:
                    reconstructions, posterior = vae(triplane_values)
                    loss, log_dict_ae = loss_fn(triplane_values, reconstructions, posterior, vert_values,
                                                split="train")
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(vae.parameters(), max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                if global_step % checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            # logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}

            logs = log_dict_ae
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= max_train_steps:
                break

        accelerator.wait_for_everyone()

    accelerator.end_training()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/triplane_vae.yaml")
    args = parser.parse_args()
    main(**OmegaConf.load(args.config))