File size: 2,058 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import time

from mmcv import Registry, build_from_cfg
from torch.utils.data import DataLoader

from DiT_VAE.diffusion.data.transforms import get_transform
from DiT_VAE.diffusion.utils.logger import get_root_logger

DATASETS = Registry('datasets')

DATA_ROOT = '/cache/data'


def set_data_root(data_root):
    global DATA_ROOT
    DATA_ROOT = data_root


def get_data_path(data_dir):
    if os.path.isabs(data_dir):
        return data_dir
    global DATA_ROOT
    return os.path.join(DATA_ROOT, data_dir)


def build_dataset_triplane(cfg, resolution=256, **kwargs):
    logger = get_root_logger()

    dataset_type = cfg.get('type')
    logger.info(f"Constructing dataset {dataset_type}...")
    t = time.time()

    dataset = build_from_cfg(cfg, DATASETS, default_args=dict( image_size=resolution, **kwargs))
    logger.info(f"Dataset {dataset_type} constructed. time: {(time.time() - t):.2f} s, length: {len(dataset)} ")
    return dataset
def build_dataset(cfg, resolution=224, **kwargs):
    logger = get_root_logger()

    dataset_type = cfg.get('type')
    logger.info(f"Constructing dataset {dataset_type}...")
    t = time.time()
    transform = cfg.pop('transform', 'default_train')
    transform = get_transform(transform, resolution)
    dataset = build_from_cfg(cfg, DATASETS, default_args=dict(transform=transform, resolution=resolution, **kwargs))
    logger.info(f"Dataset {dataset_type} constructed. time: {(time.time() - t):.2f} s, length (use/ori): {len(dataset)}/{dataset.ori_imgs_nums}")
    return dataset


def build_dataloader(dataset, batch_size=256, num_workers=2, shuffle=True, **kwargs):
    return (
        DataLoader(
            dataset,
            batch_sampler=kwargs['batch_sampler'],
            num_workers=num_workers,
            pin_memory=True,
        )
        if 'batch_sampler' in kwargs
        else DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=shuffle,
            num_workers=num_workers,
            pin_memory=True,
            **kwargs
        )
    )