File size: 21,175 Bytes
8f481d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import os
import sys
import warnings
import logging
import argparse
import json
import random
from datetime import datetime

import torch
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm
from natsort import natsorted, ns
from einops import rearrange
from omegaconf import OmegaConf
from huggingface_hub import snapshot_download

from transformers import (
    Dinov2Model, CLIPImageProcessor, CLIPVisionModelWithProjection, AutoImageProcessor
)
from Next3d.training_avatar_texture.camera_utils import LookAtPoseSampler, FOV_to_intrinsics

from data_process.lib.FaceVerse.renderer import Faceverse_manager
import recon.dnnlib as dnnlib
import recon.legacy as legacy

from DiT_VAE.diffusion.utils.misc import read_config
from DiT_VAE.vae.triplane_vae import AutoencoderKL as AutoencoderKLTriplane
from DiT_VAE.diffusion import IDDPM, DPMS
from DiT_VAE.diffusion.model.nets import TriDitCLIPDINO_XL_2
from DiT_VAE.diffusion.data.datasets import get_chunks

# Get the directory of the current script
father_path = os.path.dirname(os.path.abspath(__file__))

# Add necessary paths dynamically
sys.path.extend([
    os.path.join(father_path, 'recon'),
    os.path.join(father_path, 'Next3d')
])

# Suppress warnings (especially for PyTorch)
warnings.filterwarnings("ignore")

# Configure logging settings
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s"
)


def get_args():
    """Parse and return command-line arguments."""
    parser = argparse.ArgumentParser(description="4D Triplane Generation Arguments")

    # Configuration and model checkpoints
    parser.add_argument("--config", type=str, default="./configs/infer_config.py",
                        help="Path to the configuration file.")

    # Input data paths
    parser.add_argument("--target_path", type=str, required=True, default='./demo_data/target_video/data_obama',
                        help="Base path of the dataset.")
    parser.add_argument("--img_file", type=str, required=True, default='./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs',
                        help="Directory containing input images.")
    parser.add_argument("--input_img_motion", type=str,
                        default="./demo_data/source_img/img_generate_different_domain/motions/demo_imgs",
                        help="Directory containing motion features.")
    parser.add_argument("--video_name", type=str, required=True, default='Obama',
                        help="Name of the video.")
    parser.add_argument("--input_img_fvid", type=str,
                        default="./demo_data/source_img/img_generate_different_domain/coeffs/demo_imgs",
                        help="Path to input image coefficients.")

    # Output settings
    parser.add_argument("--output_basedir", type=str, default="./output",
                        help="Base directory for saving output results.")

    # Generation parameters
    parser.add_argument("--bs", type=int, default=1,
                        help="Batch size for processing.")
    parser.add_argument("--cfg_scale", type=float, default=4.5,
                        help="CFG scale parameter.")
    parser.add_argument("--sampling_algo", type=str, default="dpm-solver",
                        choices=["iddpm", "dpm-solver"],
                        help="Sampling algorithm to be used.")
    parser.add_argument("--seed", type=int, default=0,
                        help="Random seed for reproducibility.")
    parser.add_argument("--select_img", type=str, default=None,
                        help="Optional: Select a specific image.")
    parser.add_argument('--step', default=-1, type=int)
    parser.add_argument('--use_demo_cam', action='store_true', help="Enable predefined camera parameters")
    return parser.parse_args()


def set_env(seed=0):
    """Set random seed for reproducibility across multiple frameworks."""
    torch.manual_seed(seed)  # Set PyTorch seed
    torch.cuda.manual_seed_all(seed)  # If using multi-GPU
    np.random.seed(seed)  # Set NumPy seed
    random.seed(seed)  # Set Python built-in random module seed
    torch.set_grad_enabled(False)  # Disable gradients for inference


def to_rgb_image(image: Image.Image):
    """Convert an image to RGB format if necessary."""
    if image.mode == 'RGB':
        return image
    elif image.mode == 'RGBA':
        img = Image.new("RGB", image.size, (127, 127, 127))
        img.paste(image, mask=image.getchannel('A'))
        return img
    else:
        raise ValueError(f"Unsupported image type: {image.mode}")


def image_process(image_path):
    """Preprocess an image for CLIP and DINO models."""
    image = to_rgb_image(Image.open(image_path))
    clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values.to(device)
    dino_image = dino_img_processor(images=image, return_tensors="pt").pixel_values.to(device)
    return dino_image, clip_image


def video_gen(frames_dir, output_path, fps=30):
    """Generate a video from image frames."""
    frame_files = natsorted(os.listdir(frames_dir), alg=ns.PATH)
    frames = [cv2.imread(os.path.join(frames_dir, f)) for f in frame_files]
    H, W = frames[0].shape[:2]
    video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'MP4V'), fps, (W, H))
    for frame in frames:
        video_writer.write(frame)
    video_writer.release()


def trans(tensor_img):
    img = (tensor_img.permute(0, 2, 3, 1) * 0.5 + 0.5).clamp(0, 1) * 255.
    img = img.to(torch.uint8)
    img = img[0].detach().cpu().numpy()

    return img


def get_vert(vert_dir):
    uvcoords_image = np.load(os.path.join(vert_dir))[..., :3]
    uvcoords_image[..., -1][uvcoords_image[..., -1] < 0.5] = 0
    uvcoords_image[..., -1][uvcoords_image[..., -1] >= 0.5] = 1
    return torch.tensor(uvcoords_image.copy()).float().unsqueeze(0)


def generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature, uncond_clip_feature,
                     uncond_dino_feature, device, latent_size, sampling_algo):
    """
    Generate latent samples using the specified diffusion model.

    Args:
        DiT_model (torch.nn.Module): The diffusion model.
        cfg_scale (float): The classifier-free guidance scale.
        sample_steps (int): Number of sampling steps.
        clip_feature (torch.Tensor): CLIP feature tensor.
        dino_feature (torch.Tensor): DINO feature tensor.
        uncond_clip_feature (torch.Tensor): Unconditional CLIP feature tensor.
        uncond_dino_feature (torch.Tensor): Unconditional DINO feature tensor.
        device (str): Device for computation.
        latent_size (tuple): The latent space size.
        sampling_algo (str): The sampling algorithm ('iddpm' or 'dpm-solver').

    Returns:
        torch.Tensor: The generated samples.
    """
    n = 1  # Batch size
    z = torch.randn(n, 8, latent_size[0], latent_size[1], device=device)

    if sampling_algo == 'iddpm':
        z = z.repeat(2, 1, 1, 1)  # Duplicate for classifier-free guidance
        model_kwargs = dict(y=torch.cat([clip_feature, uncond_clip_feature]),
                            img_feature=torch.cat([dino_feature, dino_feature]),
                            cfg_scale=cfg_scale)
        diffusion = IDDPM(str(sample_steps))
        samples = diffusion.p_sample_loop(DiT_model.forward_with_cfg, z.shape, z, clip_denoised=False,
                                          model_kwargs=model_kwargs, progress=True, device=device)
        samples, _ = samples.chunk(2, dim=0)  # Remove unconditional samples

    elif sampling_algo == 'dpm-solver':
        dpm_solver = DPMS(DiT_model.forward_with_dpmsolver,
                          condition=[clip_feature, dino_feature],
                          uncondition=[uncond_clip_feature, dino_feature],
                          cfg_scale=cfg_scale)
        samples = dpm_solver.sample(z, steps=sample_steps, order=2, skip_type="time_uniform", method="multistep")
    else:
        raise ValueError(f"Invalid sampling_algo '{sampling_algo}'. Choose either 'iddpm' or 'dpm-solver'.")

    return samples

def images_to_video(image_folder, output_video, fps=30):
    # Get all image files and ensure correct order
    images = [img for img in os.listdir(image_folder) if img.endswith((".png", ".jpg", ".jpeg"))]
    images = natsorted(images)  # Sort filenames naturally to preserve frame order

    if not images:
        print("❌ No images found in the directory!")
        return

    # Get the path to the FFmpeg executable
    ffmpeg_exe = ffmpeg.get_ffmpeg_exe()
    print(f"Using FFmpeg from: {ffmpeg_exe}")

    # Define input image pattern (expects images named like "%04d.png")
    image_pattern = os.path.join(image_folder, "%04d.png")

    # FFmpeg command to encode video
    command = [
        ffmpeg_exe, '-framerate', str(fps), '-i', image_pattern,
        '-c:v', 'libx264', '-preset', 'slow', '-crf', '18',  # High-quality H.264 encoding
        '-pix_fmt', 'yuv420p', '-b:v', '5000k',              # Ensure compatibility & increase bitrate
        output_video
    ]

    # Run FFmpeg command
    subprocess.run(command, check=True)

    print(f"βœ… High-quality MP4 video has been generated: {output_video}")
@torch.inference_mode()
def avatar_generation(items, bs, sample_steps, cfg_scale, save_path_base, DiT_model, render_model, std, mean, ws_avg,
                      Faceverse, pitch_range=0.25, yaw_range=0.35, demo_cam=False):
    """
    Generate avatars from input images.

    Args:
        items (list): List of image paths.
        bs (int): Batch size.
        sample_steps (int): Number of sampling steps.
        cfg_scale (float): Classifier-free guidance scale.
        save_path_base (str): Base directory for saving results.
        DiT_model (torch.nn.Module): The diffusion model.
        render_model (torch.nn.Module): The rendering model.
        std (torch.Tensor): Standard deviation normalization tensor.
        mean (torch.Tensor): Mean normalization tensor.
        ws_avg (torch.Tensor): Latent average tensor.
    """
    for chunk in tqdm(list(get_chunks(items, bs)), unit='batch'):
        if bs != 1:
            raise ValueError("Batch size > 1 not implemented")

        image_dir = chunk[0]
        image_name = os.path.splitext(os.path.basename(image_dir))[0]
        dino_img, clip_image = image_process(image_dir)

        clip_feature = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
        uncond_clip_feature = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
            -2]
        dino_feature = dinov2(dino_img).last_hidden_state
        uncond_dino_feature = dinov2(torch.zeros_like(dino_img)).last_hidden_state

        samples = generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature,
                                   uncond_clip_feature, uncond_dino_feature, device, latent_size,
                                   args.sampling_algo)

        samples = (samples / default_config.scale_factor)
        samples = rearrange(samples, "b c (f h) w -> b c f h w", f=4)
        samples = vae_triplane.decode(samples)
        samples = rearrange(samples, "b c f h w -> b f c h w")
        samples = samples * std + mean
        torch.cuda.empty_cache()

        save_frames_path_combine = os.path.join(save_path_base, image_name, 'combine')
        save_frames_path_out = os.path.join(save_path_base, image_name, 'out')
        os.makedirs(save_frames_path_combine, exist_ok=True)
        os.makedirs(save_frames_path_out, exist_ok=True)

        img_ref = np.array(Image.open(image_dir))
        img_ref_out = img_ref.copy()
        img_ref = torch.from_numpy(img_ref.astype(np.float32) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0).to(device)

        motion_app_dir = os.path.join(args.input_img_motion, image_name + '.npy')
        motion_app = torch.tensor(np.load(motion_app_dir), dtype=torch.float32).unsqueeze(0).to(device)

        id_motions = os.path.join(args.input_img_fvid, image_name + '.npy')

        all_pose = json.loads(open(label_file_test).read())['labels']
        all_pose = dict(all_pose)
        if os.path.exists(id_motions):
            coeff = np.load(id_motions).astype(np.float32)
            coeff = torch.from_numpy(coeff).to(device).float().unsqueeze(0)
            Faceverse.id_coeff = Faceverse.recon_model.split_coeffs(coeff)[0]
        motion_dir = os.path.join(motion_base_dir, args.video_name)
        exp_dir = os.path.join(exp_base_dir, args.video_name)
        for frame_index, motion_name in enumerate(
                tqdm(natsorted(os.listdir(motion_dir), alg=ns.PATH), desc="Processing Frames")):
            exp_each_dir_img = os.path.join(exp_img_base_dir, args.video_name, motion_name.replace('.npy', '.png'))
            exp_each_dir = os.path.join(exp_dir, motion_name)
            motion_each_dir = os.path.join(motion_dir, motion_name)

            # Load pose data
            pose_key = os.path.join(args.video_name, motion_name.replace('.npy', '.png'))
            if demo_cam:
                cam2world_pose = LookAtPoseSampler.sample(
                    3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
                    3.14 / 2 - 0.05 + pitch_range * np.cos(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
                    torch.tensor([0, 0, 0], device=device), radius=2.7, device=device)
                pose = torch.cat([cam2world_pose.reshape(-1, 16),
                                  FOV_to_intrinsics(fov_degrees=18.837, device=device).reshape(-1, 9)], 1).to(device)
            else:
                pose = torch.tensor(np.array(all_pose[pose_key]).astype(np.float32)).float().unsqueeze(0).to(device)

            # Load and resize expression image
            exp_img = np.array(Image.open(exp_each_dir_img).resize((512, 512)))

            # Load expression coefficients
            exp_coeff = torch.from_numpy(np.load(exp_each_dir).astype(np.float32)).to(device).float().unsqueeze(0)
            exp_target = Faceverse.make_driven_rendering(exp_coeff, res=256)

            # Load motion data
            motion = torch.tensor(np.load(motion_each_dir)).float().unsqueeze(0).to(device)

            # Select refine_net processing method
            final_out = render_model(
                img_ref, None, motion_app, motion, c=pose, mesh=exp_target, triplane_recon=samples,
                ws_avg=ws_avg, motion_scale=1.
            )

            # Process output image
            final_out = trans(final_out['image_sr'])
            output_img_combine = np.hstack((img_ref_out, exp_img, final_out))

            # Save output images
            frame_name = f'{str(frame_index).zfill(4)}.png'
            Image.fromarray(output_img_combine, 'RGB').save(os.path.join(save_frames_path_combine, frame_name))
            Image.fromarray(final_out, 'RGB').save(os.path.join(save_frames_path_out, frame_name))

        # Generate videos
        images_to_video(save_frames_path_combine, os.path.join(save_path_base, image_name + '_combine.mp4'))
        images_to_video(save_frames_path_out, os.path.join(save_path_base, image_name + '_out.mp4'))
        logging.info(f"βœ… Video generation completed successfully!")
        logging.info(f"πŸ“‚ Combined video saved at: {os.path.join(save_path_base, image_name + '_combine.mp4')}")
        logging.info(f"πŸ“‚ Output video saved at: {os.path.join(save_path_base, image_name + '_out.mp4')}")


def load_motion_aware_render_model(ckpt_path):
    """Load the motion-aware render model from a checkpoint."""
    logging.info("Loading motion-aware render model...")
    with dnnlib.util.open_url(ckpt_path, 'rb') as f:
        network = legacy.load_network_pkl(f)  # type: ignore
    logging.info("Motion-aware render model loaded.")
    return network['G_ema'].to(device)


def load_diffusion_model(ckpt_path, latent_size):
    """Load the diffusion model (DiT)."""
    logging.info("Loading diffusion model (DiT)...")

    DiT_model = TriDitCLIPDINO_XL_2(input_size=latent_size).to(device)
    ckpt = torch.load(ckpt_path, map_location="cpu")

    # Remove keys that can cause mismatches
    for key in ['pos_embed', 'base_model.pos_embed', 'model.pos_embed']:
        ckpt['state_dict'].pop(key, None)
        ckpt.get('state_dict_ema', {}).pop(key, None)

    state_dict = ckpt.get('state_dict_ema', ckpt)
    DiT_model.load_state_dict(state_dict, strict=False)
    DiT_model.eval()
    logging.info("Diffusion model (DiT) loaded.")
    return DiT_model


def load_vae_clip_dino(config, device):
    """Load VAE, CLIP, and DINO models."""
    logging.info("Loading VAE, CLIP, and DINO models...")

    # Load CLIP image encoder
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        config.image_encoder_path)
    image_encoder.requires_grad_(False)
    image_encoder.to(device)

    # Load VAE
    config_vae = OmegaConf.load(config.vae_triplane_config_path)
    vae_triplane = AutoencoderKLTriplane(ddconfig=config_vae['ddconfig'], lossconfig=None, embed_dim=8)
    vae_triplane.to(device)

    vae_ckpt_path = os.path.join(config.vae_pretrained, 'pytorch_model.bin')
    if not os.path.isfile(vae_ckpt_path):
        raise RuntimeError(f"VAE checkpoint not found at {vae_ckpt_path}")

    vae_triplane.load_state_dict(torch.load(vae_ckpt_path, map_location="cpu"))
    vae_triplane.requires_grad_(False)

    # Load DINO model
    dinov2 = Dinov2Model.from_pretrained(config.dino_pretrained)
    dinov2.requires_grad_(False)
    dinov2.to(device)

    # Load image processors
    dino_img_processor = AutoImageProcessor.from_pretrained(config.dino_pretrained)
    clip_image_processor = CLIPImageProcessor()

    logging.info("VAE, CLIP, and DINO models loaded.")
    return vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor


def prepare_image_list(img_dir, selected_img):
    """Prepare the list of image paths for processing."""
    if selected_img and selected_img in os.listdir(img_dir):
        return [os.path.join(img_dir, selected_img)]

    return sorted([os.path.join(img_dir, img) for img in os.listdir(img_dir)])


if __name__ == '__main__':

    model_path = "./pretrained_model"
    if not os.path.exists(model_path):
        logging.info("πŸ“₯ Model not found. Downloading from Hugging Face...")
        snapshot_download(repo_id="KumaPower/AvatarArtist", local_dir=model_path)
        logging.info("βœ… Model downloaded successfully!")
    else:
        logging.info("πŸŽ‰ Pretrained model already exists. Skipping download.")

    args = get_args()
    exp_base_dir = os.path.join(args.target_path, 'coeffs')
    exp_img_base_dir = os.path.join(args.target_path, 'images512x512')
    motion_base_dir = os.path.join(args.target_path, 'motions')
    label_file_test = os.path.join(args.target_path, 'images512x512/dataset_realcam.json')
    set_env(args.seed)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    weight_dtype = torch.float32
    logging.info(f"Running inference with {weight_dtype}")

    # Load configuration
    default_config = read_config(args.config)

    # Ensure valid sampling algorithm
    assert args.sampling_algo in ['iddpm', 'dpm-solver', 'sa-solver']

    # Prepare image list
    items = prepare_image_list(args.img_file, args.select_img)
    logging.info(f"Input images: {items}")

    # Load motion-aware render model
    motion_aware_render_model = load_motion_aware_render_model(default_config.motion_aware_render_model_ckpt)

    # Load diffusion model (DiT)
    triplane_size = (256 * 4, 256)
    latent_size = (triplane_size[0] // 8, triplane_size[1] // 8)
    sample_steps = args.step if args.step != -1 else {'iddpm': 100, 'dpm-solver': 20, 'sa-solver': 25}[
        args.sampling_algo]
    DiT_model = load_diffusion_model(default_config.DiT_model_ckpt, latent_size)

    # Load VAE, CLIP, and DINO
    vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor = load_vae_clip_dino(default_config,
                                                                                                       device)

    # Load normalization parameters
    triplane_std = torch.load(default_config.std_dir).to(device).reshape(1, -1, 1, 1, 1)
    triplane_mean = torch.load(default_config.mean_dir).to(device).reshape(1, -1, 1, 1, 1)

    # Load average latent vector
    ws_avg = torch.load(default_config.ws_avg_pkl).to(device)[0]

    # Set up save directory
    save_root = os.path.join(args.output_basedir, f'{datetime.now().date()}', args.video_name)
    os.makedirs(save_root, exist_ok=True)

    # Set up face verse for amimation
    base_coff = np.load(
        'pretrained_model/temp.npy').astype(
        np.float32)
    base_coff = torch.from_numpy(base_coff).float()
    Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)

    # Run avatar generation
    avatar_generation(items, args.bs, sample_steps, args.cfg_scale, save_root, DiT_model, motion_aware_render_model,
                      triplane_std, triplane_mean, ws_avg, Faceverse, demo_cam=args.use_demo_cam)