Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,646 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""
import math
import torch
import torch.nn as nn
import numpy as np
# from training_avatar_texture.volumetric_rendering.ray_marcher import MipRayMarcher2
# from training_avatar_texture.volumetric_rendering import math_utils
global Meshes, load_obj, rasterize_meshes
from pytorch3d.structures import Meshes
from pytorch3d.io import load_obj
from pytorch3d.renderer.mesh import rasterize_meshes
def generate_planes(return_inv=True): # 与project_onto_planes相对应
"""
Defines planes by the three vectors that form the "axes" of the
plane. Should work with arbitrary number of planes and planes of
arbitrary orientation.
"""
planes = torch.tensor([[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
[[1, 0, 0],
[0, 0, 1],
[0, 1, 0]],
[[0, 0, 1],
[1, 0, 0],
[0, 1, 0]]], dtype=torch.float32)
if return_inv:
return torch.linalg.inv(planes)
else:
return planes
# from torch_utils import misc
# @misc.profiled_function
def dict2obj(d):
# if isinstance(d, list):
# d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
# from torch_utils import persistence
# @persistence.persistent_class
class Pytorch3dRasterizer(nn.Module):
## TODO: add support for rendering non-squared images, since pytorc3d supports this now
""" Borrowed from https://github.com/facebookresearch/pytorch3d
Notice:
x,y,z are in image space, normalized
can only render squared image now
"""
def __init__(self, image_size=224):
"""
use fixed raster_settings for rendering faces
"""
super().__init__()
raster_settings = {
'image_size': image_size,
'blur_radius': 0.0,
'faces_per_pixel': 1,
'bin_size': None,
'max_faces_per_bin': None,
'perspective_correct': False,
'cull_backfaces': True
}
# raster_settings = dict2obj(raster_settings)
self.raster_settings = raster_settings
def forward(self, vertices, faces, attributes=None, h=None, w=None):
fixed_vertices = vertices.clone()
fixed_vertices[...,:2] = -fixed_vertices[...,:2]
raster_settings = self.raster_settings
if h is None and w is None:
image_size = raster_settings['image_size']
else:
image_size = [h, w]
if h>w:
fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w
else:
fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h
meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long())
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=image_size,
blur_radius=raster_settings['blur_radius'],
faces_per_pixel=raster_settings['faces_per_pixel'],
bin_size=0,#raster_settings['bin_size'],
max_faces_per_bin=raster_settings['max_faces_per_bin'],
perspective_correct=raster_settings['perspective_correct'],
cull_backfaces=raster_settings['cull_backfaces']
)
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone(); attributes = attributes.view(attributes.shape[0]*attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:,:,:,0].permute(0,3,1,2)
pixel_vals = torch.cat([pixel_vals, vismask[:,:,:,0][:,None,:,:]], dim=1)
# print(image_size)
# import ipdb; ipdb.set_trace()
return pixel_vals
def render_after_rasterize(attributes, pix_to_face, bary_coords):
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
return pixel_vals
# borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, vertices.shape[-1]))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
# ---------------------------- process/generate vertices, normals, faces
def generate_triangles(h, w, margin_x=2, margin_y=5, mask = None):
# quad layout:
# 0 1 ... w-1
# w w+1
#.
# w*h
triangles = []
for x in range(margin_x, w-1-margin_x):
for y in range(margin_y, h-1-margin_y):
triangle0 = [y*w + x, y*w + x + 1, (y+1)*w + x]
triangle1 = [y*w + x + 1, (y+1)*w + x + 1, (y+1)*w + x]
triangles.append(triangle0)
triangles.append(triangle1)
triangles = np.array(triangles)
triangles = triangles[:,[0,2,1]]
return triangles
def transform_points(points, tform, points_scale=None, out_scale=None):
points_2d = points[:,:,:2]
#'input points must use original range'
if points_scale:
assert points_scale[0]==points_scale[1]
points_2d = (points_2d*0.5 + 0.5)*points_scale[0]
# import ipdb; ipdb.set_trace()
batch_size, n_points, _ = points.shape
trans_points_2d = torch.bmm(
torch.cat([points_2d, torch.ones([batch_size, n_points, 1], device=points.device, dtype=points.dtype)], dim=-1),
tform
)
if out_scale: # h,w of output image size
trans_points_2d[:,:,0] = trans_points_2d[:,:,0]/out_scale[1]*2 - 1
trans_points_2d[:,:,1] = trans_points_2d[:,:,1]/out_scale[0]*2 - 1
trans_points = torch.cat([trans_points_2d[:,:,:2], points[:,:,2:]], dim=-1)
return trans_points
def batch_orth_proj(X, camera):
''' orthgraphic projection
X: 3d vertices, [bz, n_point, 3]
camera: scale and translation, [bz, 3], [scale, tx, ty]
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
shape = X_trans.shape
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
def angle2matrix(angles):
''' get rotation matrix from three rotation angles(degree). right-handed.
Args:
angles: [batch_size, 3] tensor containing X, Y, and Z angles.
x: pitch. positive for looking down.
y: yaw. positive for looking left.
z: roll. positive for tilting head right.
Returns:
R: [batch_size, 3, 3]. rotation matrices.
'''
angles = angles*(np.pi)/180.
s = torch.sin(angles)
c = torch.cos(angles)
cx, cy, cz = (c[:, 0], c[:, 1], c[:, 2])
sx, sy, sz = (s[:, 0], s[:, 1], s[:, 2])
zeros = torch.zeros_like(s[:, 0]).to(angles.device)
ones = torch.ones_like(s[:, 0]).to(angles.device)
# Rz.dot(Ry.dot(Rx))
R_flattened = torch.stack(
[
cz * cy, cz * sy * sx - sz * cx, cz * sy * cx + sz * sx,
sz * cy, sz * sy * sx + cz * cx, sz * sy * cx - cz * sx,
-sy, cy * sx, cy * cx,
],
dim=0) #[batch_size, 9]
R = torch.reshape(R_flattened, (-1, 3, 3)) #[batch_size, 3, 3]
return R
import cv2
# end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r', end_list=[19]):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
radius = max(int(min(image.shape[0], image.shape[1])/200), 1)
for i in range(kpts.shape[0]):
st = kpts[i, :2]
if kpts.shape[1]==4:
if kpts[i, 3] > 0.5:
c = (0, 255, 0)
else:
c = (0, 0, 255)
if i in end_list:
continue
ed = kpts[i + 1, :2]
image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius)
image = cv2.circle(image,(int(st[0]), int(st[1])), radius, c, radius*2)
return image
import cv2
# def fill_mouth(images):
# #Input: images: [batch, 1, h, w]
# device = images.device
# mouth_masks = []
# for image in images:
# image = image[0].cpu().numpy()
# image = image * 255.
# copyImg = image.copy()
# h, w = image.shape[:2]
# mask = np.zeros([h+2, w+2],np.uint8)
# cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
# # cv2.imwrite("debug.png", copyImg)
# copyImg = torch.tensor(copyImg).to(device).to(torch.float32) / 127.5 - 1
# mouth_masks.append(copyImg.unsqueeze(0))
# mouth_masks = torch.stack(mouth_masks, 0)
# mouth_masks = ((mouth_masks * 2. - 1.) * -1. + 1.) / 2.
# # images = (images.bool() | mouth_masks.bool()).float()
# res = (images + mouth_masks).clip(0, 1)
#
# return res
def fill_mouth(images):
#Input: images: [batch, 1, h, w]
device = images.device
mouth_masks = []
out_mouth_masks = []
for image in images:
image = image[0].cpu().numpy()
image = image * 255.
copyImg = image.copy()
h, w = image.shape[:2]
mask = np.zeros([h+2, w+2], np.uint8)
cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
# cv2.imwrite("mouth_mask_ori.png", 255 - copyImg)
mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255.
mouth_masks.append(mouth_mask.unsqueeze(0))
copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3)
copyImg = cv2.blur(copyImg, (5, 5))
# cv2.imwrite("mouth_mask.png", mouth_mask)
out_mouth_masks.append(torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255.)
mouth_masks = torch.stack(mouth_masks, 0)
res = (images + mouth_masks).clip(0, 1)
return res, torch.stack(out_mouth_masks, dim=0) |