File size: 12,646 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""

import math
import torch
import torch.nn as nn
import numpy as np

# from training_avatar_texture.volumetric_rendering.ray_marcher import MipRayMarcher2
# from training_avatar_texture.volumetric_rendering import math_utils

global Meshes, load_obj, rasterize_meshes
from pytorch3d.structures import Meshes
from pytorch3d.io import load_obj
from pytorch3d.renderer.mesh import rasterize_meshes


def generate_planes(return_inv=True):   # 与project_onto_planes相对应
    """
    Defines planes by the three vectors that form the "axes" of the
    plane. Should work with arbitrary number of planes and planes of
    arbitrary orientation.
    """
    planes = torch.tensor([[[1, 0, 0],
                            [0, 1, 0],
                            [0, 0, 1]],
                            [[1, 0, 0],
                            [0, 0, 1],
                            [0, 1, 0]],
                            [[0, 0, 1],
                            [1, 0, 0],
                            [0, 1, 0]]], dtype=torch.float32)
    if return_inv:
        return torch.linalg.inv(planes)
    else:
        return planes


# from torch_utils import misc
# @misc.profiled_function
def dict2obj(d):
    # if isinstance(d, list):
    #     d = [dict2obj(x) for x in d]
    if not isinstance(d, dict):
        return d
    class C(object):
        pass
    o = C()
    for k in d:
        o.__dict__[k] = dict2obj(d[k])
    return o


# from torch_utils import persistence
# @persistence.persistent_class
class Pytorch3dRasterizer(nn.Module):
    ## TODO: add support for rendering non-squared images, since pytorc3d supports this now
    """  Borrowed from https://github.com/facebookresearch/pytorch3d
    Notice:
        x,y,z are in image space, normalized
        can only render squared image now
    """

    def __init__(self, image_size=224):
        """
        use fixed raster_settings for rendering faces
        """
        super().__init__()
        raster_settings = {
            'image_size': image_size,
            'blur_radius': 0.0,
            'faces_per_pixel': 1,
            'bin_size': None,
            'max_faces_per_bin':  None,
            'perspective_correct': False,
            'cull_backfaces': True
        }
        # raster_settings = dict2obj(raster_settings)
        self.raster_settings = raster_settings

    def forward(self, vertices, faces, attributes=None, h=None, w=None):
        fixed_vertices = vertices.clone()
        fixed_vertices[...,:2] = -fixed_vertices[...,:2]
        raster_settings = self.raster_settings
        if h is None and w is None:
            image_size = raster_settings['image_size']
        else:
            image_size = [h, w]
            if h>w:
                fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w
            else:
                fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h
            
        meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long())
        pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
            meshes_screen,
            image_size=image_size,
            blur_radius=raster_settings['blur_radius'],
            faces_per_pixel=raster_settings['faces_per_pixel'],
            bin_size=0,#raster_settings['bin_size'],
            max_faces_per_bin=raster_settings['max_faces_per_bin'],
            perspective_correct=raster_settings['perspective_correct'],
            cull_backfaces=raster_settings['cull_backfaces']
        )
        vismask = (pix_to_face > -1).float()
        D = attributes.shape[-1]
        attributes = attributes.clone(); attributes = attributes.view(attributes.shape[0]*attributes.shape[1], 3, attributes.shape[-1])
        N, H, W, K, _ = bary_coords.shape
        mask = pix_to_face == -1
        pix_to_face = pix_to_face.clone()
        pix_to_face[mask] = 0
        idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
        pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
        pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
        pixel_vals[mask] = 0  # Replace masked values in output.
        pixel_vals = pixel_vals[:,:,:,0].permute(0,3,1,2)
        pixel_vals = torch.cat([pixel_vals, vismask[:,:,:,0][:,None,:,:]], dim=1)
        # print(image_size)
        # import ipdb; ipdb.set_trace()
        return pixel_vals


def render_after_rasterize(attributes, pix_to_face, bary_coords):
    vismask = (pix_to_face > -1).float()
    D = attributes.shape[-1]
    attributes = attributes.clone()
    attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1])
    N, H, W, K, _ = bary_coords.shape
    mask = pix_to_face == -1
    pix_to_face = pix_to_face.clone()
    pix_to_face[mask] = 0
    idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
    pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
    pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
    pixel_vals[mask] = 0  # Replace masked values in output.
    pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
    pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
    return pixel_vals


# borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py
def face_vertices(vertices, faces):
    """ 
    :param vertices: [batch size, number of vertices, 3]
    :param faces: [batch size, number of faces, 3]
    :return: [batch size, number of faces, 3, 3]
    """
    assert (vertices.ndimension() == 3)
    assert (faces.ndimension() == 3)
    assert (vertices.shape[0] == faces.shape[0])
    assert (faces.shape[2] == 3)

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
    vertices = vertices.reshape((bs * nv, vertices.shape[-1]))
    # pytorch only supports long and byte tensors for indexing
    return vertices[faces.long()]


# ---------------------------- process/generate vertices, normals, faces
def generate_triangles(h, w, margin_x=2, margin_y=5, mask = None):
    # quad layout:
    # 0 1 ... w-1
    # w w+1
    #.
    # w*h
    triangles = []
    for x in range(margin_x, w-1-margin_x):
        for y in range(margin_y, h-1-margin_y):
            triangle0 = [y*w + x, y*w + x + 1, (y+1)*w + x]
            triangle1 = [y*w + x + 1, (y+1)*w + x + 1, (y+1)*w + x]
            triangles.append(triangle0)
            triangles.append(triangle1)
    triangles = np.array(triangles)
    triangles = triangles[:,[0,2,1]]
    return triangles


def transform_points(points, tform, points_scale=None, out_scale=None):
    points_2d = points[:,:,:2]
        
    #'input points must use original range'
    if points_scale:
        assert points_scale[0]==points_scale[1]
        points_2d = (points_2d*0.5 + 0.5)*points_scale[0]
    # import ipdb; ipdb.set_trace()

    batch_size, n_points, _ = points.shape
    trans_points_2d = torch.bmm(
                    torch.cat([points_2d, torch.ones([batch_size, n_points, 1], device=points.device, dtype=points.dtype)], dim=-1), 
                    tform
                    ) 
    if out_scale: # h,w of output image size
        trans_points_2d[:,:,0] = trans_points_2d[:,:,0]/out_scale[1]*2 - 1
        trans_points_2d[:,:,1] = trans_points_2d[:,:,1]/out_scale[0]*2 - 1
    trans_points = torch.cat([trans_points_2d[:,:,:2], points[:,:,2:]], dim=-1)
    return trans_points


def batch_orth_proj(X, camera):
    ''' orthgraphic projection
        X:  3d vertices, [bz, n_point, 3]
        camera: scale and translation, [bz, 3], [scale, tx, ty]
    '''
    camera = camera.clone().view(-1, 1, 3)
    X_trans = X[:, :, :2] + camera[:, :, 1:]
    X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
    shape = X_trans.shape
    Xn = (camera[:, :, 0:1] * X_trans)
    return Xn


def angle2matrix(angles):
    ''' get rotation matrix from three rotation angles(degree). right-handed.
    Args:
        angles: [batch_size, 3] tensor containing X, Y, and Z angles.
        x: pitch. positive for looking down.
        y: yaw. positive for looking left. 
        z: roll. positive for tilting head right. 
    Returns:
        R: [batch_size, 3, 3]. rotation matrices.
    '''
    angles = angles*(np.pi)/180.
    s = torch.sin(angles)
    c = torch.cos(angles)

    cx, cy, cz = (c[:, 0], c[:, 1], c[:, 2])
    sx, sy, sz = (s[:, 0], s[:, 1], s[:, 2])

    zeros = torch.zeros_like(s[:, 0]).to(angles.device)
    ones = torch.ones_like(s[:, 0]).to(angles.device)

    # Rz.dot(Ry.dot(Rx))
    R_flattened = torch.stack(
    [
      cz * cy, cz * sy * sx - sz * cx, cz * sy * cx + sz * sx,
      sz * cy, sz * sy * sx + cz * cx, sz * sy * cx - cz * sx,
          -sy,                cy * sx,                cy * cx,
    ],
    dim=0) #[batch_size, 9]
    R = torch.reshape(R_flattened, (-1, 3, 3)) #[batch_size, 3, 3]
    return R

import cv2
# end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r', end_list=[19]):
    ''' Draw 68 key points
    Args:
        image: the input image
        kpt: (68, 3).
    '''
    if color == 'r':
        c = (255, 0, 0)
    elif color == 'g':
        c = (0, 255, 0)
    elif color == 'b':
        c = (255, 0, 0)
    image = image.copy()
    kpts = kpts.copy()
    radius = max(int(min(image.shape[0], image.shape[1])/200), 1)
    for i in range(kpts.shape[0]):
        st = kpts[i, :2]
        if kpts.shape[1]==4:
            if kpts[i, 3] > 0.5:
                c = (0, 255, 0)
            else:
                c = (0, 0, 255)
        if i in end_list:
            continue
        ed = kpts[i + 1, :2]
        image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius)
        image = cv2.circle(image,(int(st[0]), int(st[1])), radius, c, radius*2)

    return image


import cv2
# def fill_mouth(images):
#     #Input: images: [batch, 1, h, w]
#     device = images.device
#     mouth_masks = []
#     for image in images:
#         image = image[0].cpu().numpy()
#         image = image * 255.
#         copyImg = image.copy()
#         h, w = image.shape[:2]
#         mask = np.zeros([h+2, w+2],np.uint8)
#         cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
#         # cv2.imwrite("debug.png", copyImg)
#         copyImg = torch.tensor(copyImg).to(device).to(torch.float32) / 127.5 - 1
#         mouth_masks.append(copyImg.unsqueeze(0))
#     mouth_masks = torch.stack(mouth_masks, 0)
#     mouth_masks = ((mouth_masks * 2. - 1.) * -1. + 1.) / 2.
#     # images = (images.bool() | mouth_masks.bool()).float()
#     res = (images + mouth_masks).clip(0, 1)
#
#     return res

def fill_mouth(images):
    #Input: images: [batch, 1, h, w]
    device = images.device
    mouth_masks = []
    out_mouth_masks = []
    for image in images:
        image = image[0].cpu().numpy()
        image = image * 255.
        copyImg = image.copy()
        h, w = image.shape[:2]
        mask = np.zeros([h+2, w+2], np.uint8)
        cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
        # cv2.imwrite("mouth_mask_ori.png", 255 - copyImg)
        mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255.
        mouth_masks.append(mouth_mask.unsqueeze(0))

        copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3)
        copyImg = cv2.blur(copyImg, (5, 5))
        # cv2.imwrite("mouth_mask.png", mouth_mask)
        out_mouth_masks.append(torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255.)

    mouth_masks = torch.stack(mouth_masks, 0)
    res = (images + mouth_masks).clip(0, 1)

    return res, torch.stack(out_mouth_masks, dim=0)