Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,631 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
import os
import numpy as np
import torch
import torch.nn.functional as F
import cv2
import torchvision
from lib.render_utils.renderer import (
batch_orth_proj, angle2matrix, face_vertices, render_after_rasterize
)
from lib.render_utils.ortho_renderer import get_renderer
from lib.FaceVerse.FaceVerseModel_v3 import ModelRenderer
import torchvision.utils as utils
from tqdm import tqdm
from lib.FaceVerse import get_recon_model
import time
from pytorch3d.structures import Meshes
import json
import multiprocessing
import shutil
count, total = multiprocessing.Value('i', 0), multiprocessing.Value('i', 0)
def load_obj_data(filename):
"""Load model data from .obj file."""
v_list, vt_list, vc_list, vn_list = [], [], [], []
f_list, fn_list, ft_list = [], [], []
with open(filename, 'r') as fp:
lines = fp.readlines()
def seg_element_data(ele_str):
"""Parse face element data."""
eles = ele_str.strip().split('/')
fv, ft, fn = None, None, None
if len(eles) == 1:
fv = int(eles[0]) - 1
elif len(eles) == 2:
fv, ft = int(eles[0]) - 1, int(eles[1]) - 1
elif len(eles) == 3:
fv, fn = int(eles[0]) - 1, int(eles[2]) - 1
ft = None if eles[1] == '' else int(eles[1]) - 1
return fv, ft, fn
for line in lines:
if len(line) < 2:
continue
line_data = line.strip().split(' ')
if line_data[0] == 'v':
v_list.append(tuple(map(float, line_data[1:4])))
vc_list.append(tuple(map(float, line_data[4:7])) if len(line_data) == 7 else (0.5, 0.5, 0.5))
elif line_data[0] == 'vt':
vt_list.append(tuple(map(float, line_data[1:3])))
elif line_data[0] == 'vn':
vn_list.append(tuple(map(float, line_data[1:4])))
elif line_data[0] == 'f':
fv0, ft0, fn0 = seg_element_data(line_data[1])
fv1, ft1, fn1 = seg_element_data(line_data[2])
fv2, ft2, fn2 = seg_element_data(line_data[3])
f_list.append((fv0, fv1, fv2))
if None not in (ft0, ft1, ft2):
ft_list.append((ft0, ft1, ft2))
if None not in (fn0, fn1, fn2):
fn_list.append((fn0, fn1, fn2))
return {
'v': np.asarray(v_list), 'vt': np.asarray(vt_list), 'vc': np.asarray(vc_list),
'vn': np.asarray(vn_list), 'f': np.asarray(f_list), 'ft': np.asarray(ft_list),
'fn': np.asarray(fn_list)
}
def save_obj_data(model, filename, log=True):
"""Save model data to .obj file."""
assert 'v' in model and model['v'].size != 0
with open(filename, 'w') as fp:
if 'v' in model:
for v, vc in zip(model['v'], model.get('vc', [])):
fp.write(f"v {v[0]} {v[1]} {v[2]} {vc[2]} {vc[1]} {vc[0]}\n")
for v in model['v']:
fp.write(f"v {v[0]} {v[1]} {v[2]}\n")
if 'vn' in model:
for vn in model['vn']:
fp.write(f"vn {vn[0]} {vn[1]} {vn[2]}\n")
if 'vt' in model:
for vt in model['vt']:
fp.write(f"vt {vt[0]} {vt[1]}\n")
if 'f' in model:
for f_, ft_, fn_ in zip(model['f'], model.get('ft', []), model.get('fn', [])):
f, ft, fn = np.array(f_) + 1, np.array(ft_) + 1, np.array(fn_) + 1
fp.write(f"f {f[0]}/{ft[0]}/{fn[0]} {f[1]}/{ft[1]}/{fn[1]} {f[2]}/{ft[2]}/{fn[2]}\n")
if log:
print(f"Saved mesh as {filename}")
def gen_mouth_mask(lms_2d, new_crop=True):
"""Generate a mouth mask based on 2D landmarks."""
lm = lms_2d[np.newaxis, ...]
if new_crop:
lm_mouth_outer = lm[:, [164, 18, 57, 287]]
mouth_mask = np.concatenate([
np.min(lm_mouth_outer[..., 1], axis=1, keepdims=True),
np.max(lm_mouth_outer[..., 1], axis=1, keepdims=True),
np.min(lm_mouth_outer[..., 0], axis=1, keepdims=True),
np.max(lm_mouth_outer[..., 0], axis=1, keepdims=True)], axis=1
)
else:
lm_mouth_outer = lm[:, [0, 17, 61, 291, 39, 269, 405, 181]]
mouth_avg = np.mean(lm_mouth_outer, axis=1, keepdims=False)
ups, bottoms = np.max(lm_mouth_outer[..., 0], axis=1, keepdims=True), np.min(lm_mouth_outer[..., 0], axis=1,
keepdims=True)
lefts, rights = np.min(lm_mouth_outer[..., 1], axis=1, keepdims=True), np.max(lm_mouth_outer[..., 1], axis=1,
keepdims=True)
mask_res = np.max(np.concatenate((ups - bottoms, rights - lefts), axis=1), axis=1, keepdims=True) * 1.2
mask_res = mask_res.astype(int)
mouth_mask = np.concatenate([
(mouth_avg[:, 1:] - mask_res // 2).astype(int),
(mouth_avg[:, 1:] + mask_res // 2).astype(int),
(mouth_avg[:, :1] - mask_res // 2).astype(int),
(mouth_avg[:, :1] + mask_res // 2).astype(int)], axis=1
)
return mouth_mask[0]
def render_orth(tracking_dir, save_dir, face_model_dir, fv2fl_T, orth_transforms, render_vis=True, save_mesh_dir=None):
"""
Perform orthographic rendering of face models.
Args:
tracking_dir (str): Directory containing tracking data.
save_dir (str): Directory to save rendered results.
face_model_dir (str): Directory containing face model files.
fv2fl_T (np.ndarray): Transformation matrix.
orth_transforms (dict): Orthographic transformation parameters.
render_vis (bool): Whether to save visualization images.
save_mesh_dir (str, optional): Directory to save mesh files.
Returns:
None
"""
debug = False
save_mesh_flag = save_mesh_dir is not None
res = 256
# Initialize orthographic renderer
ortho_renderer = get_renderer(
img_size=res,
device='cuda:0',
T=torch.tensor([[0, 0, 10.]], dtype=torch.float32, device='cuda:0'),
K=[-1.0, -1.0, 0., 0.],
orthoCam=True,
rasterize_blur_radius=1e-6
)
orth_scale = orth_transforms['scale']
orth_shift = torch.from_numpy(orth_transforms['shift']).cuda().unsqueeze(0)
# Load face model
face_model_path = os.path.join(face_model_dir, 'faceverse_v3_1.npy')
recon_model, model_dict = get_recon_model(model_path=face_model_path, return_dict=True, device='cuda:0')
vert_uvcoords = model_dict['uv_per_ver']
# Expand the UV area for better face fitting
vert_idx = (vert_uvcoords[:, 1] > 0.273) & (vert_uvcoords[:, 1] < 0.727) & \
(vert_uvcoords[:, 0] > 0.195) & (vert_uvcoords[:, 0] < 0.805)
vert_uvcoords[vert_idx] = (vert_uvcoords[vert_idx] - 0.5) * 1.4 + 0.5
vert_uvcoords = torch.from_numpy(vert_uvcoords).unsqueeze(0).cuda()
faces = uvfaces = torch.from_numpy(model_dict['tri']).unsqueeze(0).cuda()
# Load face mask
vert_mask = np.load(os.path.join(face_model_dir, 'v31_face_mask_new.npy'))
vert_mask[model_dict['ver_inds'][0]:model_dict['ver_inds'][2]] = 1
vert_mask = torch.from_numpy(vert_mask).view(1, -1, 1).cuda()
vert_uvcoords = vert_uvcoords * 2 - 1
vert_uvcoords = torch.cat([vert_uvcoords, vert_mask], dim=-1) # [bz, ntv, 3]
face_uvcoords = face_vertices(vert_uvcoords, uvfaces).cuda()
# Prepare to save mesh if required
if save_mesh_flag:
tri = recon_model.tri.cpu().numpy().squeeze()
uv = recon_model.uv.cpu().numpy().squeeze()
tri_uv = recon_model.tri_uv.cpu().numpy().squeeze()
# Transformation matrix
trans_init = torch.from_numpy(fv2fl_T).cuda()
R_ = trans_init[:3, :3]
t_ = trans_init[:3, 3:]
tform = angle2matrix(torch.tensor([0, 0, 0]).reshape(1, -1)).cuda()
cam = torch.tensor([1., 0, 0]).cuda()
mouth_masks = []
total_num = len(os.listdir(tracking_dir))
progress_bar = tqdm(os.listdir(tracking_dir))
t0 = time.time()
count = 0
for name in progress_bar:
prefix = '0'
dst_sub_dir = os.path.join(save_dir, prefix)
os.makedirs(dst_sub_dir, exist_ok=True)
coeff = torch.from_numpy(np.load(os.path.join(tracking_dir, name, 'coeffs.npy'))).unsqueeze(0).cuda()
id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale = recon_model.split_coeffs(coeff)
# Compute vertices
vs = recon_model.get_vs(id_coeff, exp_coeff)
vert = torch.matmul(vs[0], R_.T) + t_.T
v = vert.unsqueeze(0)
transformed_vertices = (torch.bmm(v, tform) + orth_shift) * orth_scale
transformed_vertices = batch_orth_proj(transformed_vertices, cam)
transformed_vertices = torch.bmm(transformed_vertices,
angle2matrix(torch.tensor([0, 180, 0]).reshape(1, -1)).cuda())
# Save mesh if required
if save_mesh_flag:
mesh = {'v': transformed_vertices.squeeze().cpu().numpy(), 'vt': uv, 'f': tri, 'ft': tri_uv}
os.makedirs(os.path.join(save_mesh_dir, prefix), exist_ok=True)
save_obj_data(mesh, os.path.join(save_mesh_dir, prefix, name.split('.')[0] + '.obj'), log=False)
# Rasterization and rendering
mesh = Meshes(transformed_vertices, faces.long())
fragment = ortho_renderer.rasterizer(mesh)
rendering = render_after_rasterize(
attributes=face_uvcoords,
pix_to_face=fragment.pix_to_face,
bary_coords=fragment.bary_coords
)
uvcoords_images, render_mask = rendering[:, :-1, :, :], rendering[:, -1:, :, :]
render_mask *= uvcoords_images[:, -1:]
uvcoords_images *= render_mask
np.save(os.path.join(dst_sub_dir, name.split('.')[0] + '.npy'), rendering[0].permute(1, 2, 0).cpu().numpy())
if render_vis:
utils.save_image(uvcoords_images, os.path.join(dst_sub_dir, name.split('.')[0] + '.png'), normalize=True,
range=(-1, 1))
# Compute 2D landmarks
lms_3d = recon_model.get_lms(transformed_vertices).cpu().squeeze().numpy()
lms_2d = np.round((lms_3d[:, :2] + 1) * 0.5 * res).astype(np.uint8)
mouth_mask = gen_mouth_mask(lms_2d)
mouth_masks.append([f'{prefix}/{name.split(".")[0]}.png', mouth_mask.tolist()])
count += 1
progress_bar.set_description(f'{name.split(".")[0]} {int(1000 * (time.time() - t0) / count):03d}')
# Save mouth masks
with open(os.path.join(save_dir, 'mouth_masks.json'), "w") as f:
json.dump(mouth_masks, f, indent=4)
def render_orth_mp(
tracking_dir, save_dir, face_model_dir, fv2fl_T, orth_transforms, focal_ratio,
render_vis=False, save_mesh_dir=None, save_uv_dir=None, num_thread=1,
render_normal_uv=False, prefix_ls=None, crop_param=None, use_smooth=False,
save_coeff=False, skip=False
):
"""
Perform multi-threaded orthographic rendering of face models.
Args:
tracking_dir (str): Directory containing tracking data.
save_dir (str): Directory to save rendered results.
face_model_dir (str): Directory containing face model files.
fv2fl_T (np.ndarray): Transformation matrix.
orth_transforms (dict): Orthographic transformation parameters.
focal_ratio (float): Camera focal length ratio.
render_vis (bool): Whether to save visualization images.
save_mesh_dir (str, optional): Directory to save mesh files.
save_uv_dir (str, optional): Directory to save UV maps.
num_thread (int): Number of threads for parallel processing.
render_normal_uv (bool): Whether to render normal UV maps.
prefix_ls (list, optional): List of prefixes to process.
crop_param (dict, optional): Cropping parameters.
use_smooth (bool): Whether to use smoothed coefficients.
save_coeff (bool): Whether to save coefficients.
skip (bool): Whether to skip already processed directories.
Returns:
None
"""
print(f'Num Threads: {num_thread}')
if num_thread > 1:
# Prepare data for multiprocessing
data_ls = [
{
'tracking_dir': os.path.join(tracking_dir, prefix),
'save_dir': save_dir,
'face_model_dir': face_model_dir,
'fv2fl_T': fv2fl_T,
'orth_transforms': orth_transforms,
'render_vis': render_vis,
'save_mesh_dir': save_mesh_dir,
'save_uv_dir': save_uv_dir,
'prefix': prefix,
'render_normal_uv': render_normal_uv,
'crop_param': crop_param,
'use_smooth': use_smooth,
'focal_ratio': focal_ratio,
'save_coeff': save_coeff
}
for prefix in os.listdir(tracking_dir)
if os.path.isdir(os.path.join(tracking_dir, prefix)) and
(not os.path.exists(os.path.join(save_dir, prefix)) if skip else True)
]
num_thread = min(num_thread, len(data_ls))
with multiprocessing.Pool(num_thread) as pool:
pool.map(perform_render, data_ls)
else:
# Single-threaded execution
if prefix_ls is None:
for prefix in os.listdir(tracking_dir):
if os.path.isdir(os.path.join(tracking_dir, prefix)):
perform_render({
'tracking_dir': os.path.join(tracking_dir, prefix),
'save_dir': save_dir,
'face_model_dir': face_model_dir,
'fv2fl_T': fv2fl_T,
'orth_transforms': orth_transforms,
'render_vis': render_vis,
'save_mesh_dir': save_mesh_dir,
'save_uv_dir': save_uv_dir,
'prefix': prefix,
'render_normal_uv': render_normal_uv,
'crop_param': crop_param,
'use_smooth': use_smooth,
'focal_ratio': focal_ratio,
'save_coeff': save_coeff
})
else:
for prefix in prefix_ls:
prefix = prefix if prefix else '0'
perform_render({
'tracking_dir': tracking_dir,
'save_dir': save_dir,
'face_model_dir': face_model_dir,
'fv2fl_T': fv2fl_T,
'focal_ratio': focal_ratio,
'orth_transforms': orth_transforms,
'render_vis': render_vis,
'save_mesh_dir': save_mesh_dir,
'save_uv_dir': save_uv_dir,
'prefix': prefix,
'render_normal_uv': render_normal_uv,
'crop_param': crop_param,
'use_smooth': use_smooth,
'save_coeff': save_coeff
})
def perform_render(data):
"""
Perform rendering and optionally save UV maps.
Args:
data (dict): Dictionary containing rendering parameters.
Returns:
None
"""
render_orth_(data)
if data.get('save_uv_dir') is not None:
save_uv_(data)
def save_uv_(data):
"""
Save UV maps, including normal maps and projected position maps.
Args:
data (dict): Dictionary containing rendering parameters.
Returns:
None
"""
# Extract parameters from data dictionary
tracking_dir = data['tracking_dir']
save_uv_dir = data['save_uv_dir']
face_model_dir = data['face_model_dir']
prefix = data['prefix']
focal_ratio = data['focal_ratio']
render_normal_uv = data['render_normal_uv']
img_res, render_res = 512, 256 # Default image resolution is 512
# Initialize UV renderer
uv_renderer = get_renderer(
img_size=render_res,
device='cuda:0',
T=torch.tensor([[0, 0, 10.]], dtype=torch.float32, device='cuda:0'),
K=[-1.0, -1.0, 0., 0.],
orthoCam=True,
rasterize_blur_radius=1e-6
)
# Camera intrinsic matrix
cam_K = np.eye(3, dtype=np.float32)
cam_K[0, 0] = cam_K[1, 1] = focal_ratio * img_res
cam_K[0, 2] = cam_K[1, 2] = img_res // 2
# Initialize model renderer
renderer = ModelRenderer(img_size=img_res, device='cuda:0', intr=cam_K, cam_dist=5.0)
# Load face model
face_model_path = os.path.join(face_model_dir, 'faceverse_v3_1.npy')
recon_model, model_dict = get_recon_model(model_path=face_model_path, return_dict=True, device='cuda:0', img_size=img_res, intr=cam_K, cam_dist=5)
vert_uvcoords = model_dict['uv_per_ver']
# Expand the UV area for better face fitting
vert_idx = (vert_uvcoords[:, 1] > 0.273) & (vert_uvcoords[:, 1] < 0.727) & \
(vert_uvcoords[:, 0] > 0.195) & (vert_uvcoords[:, 0] < 0.805)
vert_uvcoords[vert_idx] = (vert_uvcoords[vert_idx] - 0.5) * 1.4 + 0.5
vert_uvcoords = torch.from_numpy(vert_uvcoords).unsqueeze(0).cuda()
faces = torch.from_numpy(model_dict['tri']).unsqueeze(0).cuda()
# Load face mask
vert_mask = np.load(os.path.join(face_model_dir, 'v31_face_mask_new.npy'))
vert_mask[model_dict['ver_inds'][0]:model_dict['ver_inds'][2]] = 1
vert_mask = torch.from_numpy(vert_mask).view(1, -1, 1).cuda()
vert_uvcoords = vert_uvcoords * 2 - 1
vert_mask[0, ~vert_idx] *= 0 # For UV rendering
vert_uvcoords = torch.cat([vert_uvcoords, (1 - vert_mask)], dim=-1)
# UV rasterization
uv_fragment = uv_renderer.rasterizer(Meshes(vert_uvcoords, faces.long()))
# Load UV face mask
uv_face_eye_mask = cv2.imread(os.path.join(face_model_dir, 'dense_uv_expanded_mask_onlyFace.png'))[..., 0]
uv_face_eye_mask = torch.from_numpy(uv_face_eye_mask.astype(np.float32) / 255).view(1, 256, 256, 1).permute(0, 3, 1, 2)
os.makedirs(os.path.join(save_uv_dir, prefix), exist_ok=True)
print(f'Rendering: {tracking_dir}')
for name in os.listdir(tracking_dir):
if not os.path.exists(os.path.join(tracking_dir, name, 'finish')):
print(f'Missing: {os.path.join(tracking_dir, name, "finish")}')
continue
coeff = torch.from_numpy(np.load(os.path.join(tracking_dir, name, 'coeffs.npy'))).unsqueeze(0).cuda()
id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale = recon_model.split_coeffs(coeff)
# Compute eye transformations
l_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, :2])
r_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, 2:])
l_eye_mean = recon_model.get_l_eye_center(id_coeff)
r_eye_mean = recon_model.get_r_eye_center(id_coeff)
# Compute vertex positions
vs = recon_model.get_vs(id_coeff, exp_coeff, l_eye_mat, r_eye_mat, l_eye_mean, r_eye_mean)
# Save canonical vertex normal map in UV
if render_normal_uv:
vert_norm = recon_model.compute_norm(vs, recon_model.tri, recon_model.point_buf)
vert_norm = torch.clip((vert_norm + 1) * 127.5, 0, 255)
vert_norm = torch.cat([vert_norm, vert_mask], dim=-1)
rendered_normal = render_after_rasterize(
attributes=face_vertices(vert_norm, faces),
pix_to_face=uv_fragment.pix_to_face,
bary_coords=uv_fragment.bary_coords
).cpu()
rendered_normal = rendered_normal[:, :3] * (rendered_normal[:, -1:].clone() * rendered_normal[:, -2:-1]) * uv_face_eye_mask
normal_img = torch.clamp(rendered_normal[0, :3, :, :], 0, 255).permute(1, 2, 0).cpu().numpy().astype(np.uint8)
cv2.imwrite(os.path.join(save_uv_dir, prefix, f'{name}_uvnormal.png'), normal_img[:, :, ::-1])
# Save projected position map in UV
rotation = recon_model.compute_rotation_matrix(angles)
vs_t = recon_model.rigid_transform(vs, rotation, translation, torch.abs(scale))
vs_norm = recon_model.compute_norm(vs_t, recon_model.tri, recon_model.point_buf)
vs_proj = renderer.project_vs(vs_t) / img_res * 2 - 1 # Normalize to [-1, 1]
vert_attr = torch.cat([vs_proj, vert_mask * (vs_norm[..., 2:] > 0.1).float()], dim=-1)
uv_pverts = render_after_rasterize(
attributes=face_vertices(vert_attr, faces),
pix_to_face=uv_fragment.pix_to_face,
bary_coords=uv_fragment.bary_coords
).cpu()
uv_pverts = (uv_pverts[:, :-1] * uv_pverts[:, -1:]) # Projected position map in UV
uv_pverts[:, -1:] *= uv_face_eye_mask
np.save(os.path.join(save_uv_dir, prefix, f'{name}.npy'), uv_pverts[0].permute(1, 2, 0).numpy().astype(np.float16))
# Load original image
image_path = os.path.join(os.path.dirname(save_uv_dir), 'images512x512', prefix, f'{name}.png')
images = cv2.imread(image_path)
images = torch.from_numpy(images.astype(np.float32) / 255).view(1, 512, 512, 3).permute(0, 3, 1, 2)
uv_gt = F.grid_sample(images, uv_pverts.permute(0, 2, 3, 1)[..., :2], mode='bilinear', align_corners=False)
uv_texture_gt = uv_gt * uv_pverts[:, -1:] + torch.ones_like(uv_gt) * (1 - uv_pverts[:, -1:])
cv2.imwrite(os.path.join(save_uv_dir, prefix, f'{name}_uvgttex.png'), (uv_texture_gt[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8))
def render_orth_(data):
"""
Perform orthographic rendering of face models.
Args:
data (dict): Dictionary containing rendering parameters.
Returns:
None
"""
# Extract parameters from the dictionary
tracking_dir = data['tracking_dir']
save_dir = data['save_dir']
face_model_dir = data['face_model_dir']
fv2fl_T = data['fv2fl_T']
orth_transforms = data['orth_transforms']
prefix = data['prefix']
render_vis = data['render_vis']
save_mesh_dir = data['save_mesh_dir']
crop_param = data['crop_param']
use_smooth = data['use_smooth']
save_coeff = data['save_coeff']
save_mesh_flag = save_mesh_dir is not None
res, render_res = 256, 512 # Final crop ensures 256x256 output
# Initialize orthographic renderer
ortho_renderer = get_renderer(
img_size=render_res,
device='cuda:0',
T=torch.tensor([[0, 0, 10.]], dtype=torch.float32, device='cuda:0'),
K=[-1.0, -1.0, 0., 0.],
orthoCam=True,
rasterize_blur_radius=1e-6
)
orth_scale = orth_transforms['scale']
orth_shift = torch.from_numpy(orth_transforms['shift']).cuda().unsqueeze(0)
# Load face model
face_model_path = os.path.join(face_model_dir, 'faceverse_v3_1.npy')
recon_model, model_dict = get_recon_model(model_path=face_model_path, return_dict=True, device='cuda:0')
vert_uvcoords = model_dict['uv_per_ver']
# Expand the UV area for better face fitting
vert_idx = (vert_uvcoords[:, 1] > 0.273) & (vert_uvcoords[:, 1] < 0.727) & \
(vert_uvcoords[:, 0] > 0.195) & (vert_uvcoords[:, 0] < 0.805)
vert_uvcoords[vert_idx] = (vert_uvcoords[vert_idx] - 0.5) * 1.4 + 0.5
vert_uvcoords = torch.from_numpy(vert_uvcoords).unsqueeze(0).cuda()
faces = uvfaces = torch.from_numpy(model_dict['tri']).unsqueeze(0).cuda()
# Load face mask
vert_mask = np.load(os.path.join(face_model_dir, 'v31_face_mask_new.npy'))
vert_mask[model_dict['ver_inds'][0]:model_dict['ver_inds'][2]] = 1
vert_mask = torch.from_numpy(vert_mask).view(1, -1, 1).cuda()
vert_uvcoords = vert_uvcoords * 2 - 1
vert_uvcoords = torch.cat([vert_uvcoords, vert_mask.clone()], dim=-1)
face_uvcoords = face_vertices(vert_uvcoords, uvfaces)
vert_mask[0, ~vert_idx] *= 0 # For UV rendering
# Prepare to save mesh if required
if save_mesh_flag:
tri = recon_model.tri.cpu().numpy().squeeze()
uv = recon_model.uv.cpu().numpy().squeeze()
tri_uv = recon_model.tri_uv.cpu().numpy().squeeze()
os.makedirs(os.path.join(save_mesh_dir, prefix), exist_ok=True)
# Transformation matrix
trans_init = torch.from_numpy(fv2fl_T).cuda()
R_ = trans_init[:3, :3]
t_ = trans_init[:3, 3:]
tform = angle2matrix(torch.tensor([0, 0, 0]).reshape(1, -1)).cuda()
cam = torch.tensor([1., 0, 0]).cuda()
mouth_masks = []
print(f'Rendering: {tracking_dir}')
for name in os.listdir(tracking_dir):
if not os.path.exists(os.path.join(tracking_dir, name, 'finish')):
print(f'Missing: {os.path.join(tracking_dir, name, "finish")}')
continue
dst_sub_dir = os.path.join(save_dir, prefix)
os.makedirs(dst_sub_dir, exist_ok=True)
# Load coefficients
coeff_path = os.path.join(tracking_dir, name, 'smooth_coeffs.npy' if use_smooth else 'coeffs.npy')
if save_coeff:
shutil.copy(coeff_path, os.path.join(dst_sub_dir, f'{name}_coeff.npy'))
coeff = torch.from_numpy(np.load(coeff_path)).unsqueeze(0).cuda()
id_coeff, exp_coeff, tex_coeff, angles, gamma, translation, eye_coeff, scale = recon_model.split_coeffs(coeff)
# Compute eye transformations
l_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, :2])
r_eye_mat = recon_model.compute_eye_rotation_matrix(eye_coeff[:, 2:])
l_eye_mean = recon_model.get_l_eye_center(id_coeff)
r_eye_mean = recon_model.get_r_eye_center(id_coeff)
# Compute vertex positions
vs = recon_model.get_vs(id_coeff, exp_coeff, l_eye_mat, r_eye_mat, l_eye_mean, r_eye_mean)
vert = torch.matmul(vs[0], R_.T) + t_.T
v = vert.unsqueeze(0)
transformed_vertices = (torch.bmm(v, tform) + orth_shift) * orth_scale
transformed_vertices = batch_orth_proj(transformed_vertices, cam)
# Reverse Z-axis for proper rendering
transformed_vertices[..., -1] *= -1
# Save mesh if required
if save_mesh_flag:
mesh = {'v': transformed_vertices.squeeze().cpu().numpy(), 'vt': uv, 'f': tri, 'ft': tri_uv}
save_obj_data(mesh, os.path.join(save_mesh_dir, prefix, f'{name}.obj'), log=False)
# Rasterization and rendering
mesh = Meshes(transformed_vertices, faces.long())
fragment = ortho_renderer.rasterizer(mesh)
rendering = render_after_rasterize(
attributes=face_uvcoords,
pix_to_face=fragment.pix_to_face,
bary_coords=fragment.bary_coords
)
render_mask = rendering[:, -1:, :, :].clone()
render_mask *= rendering[:, -2:-1]
rendering *= render_mask
# Apply cropping if needed
if crop_param is not None:
rendering = rendering[:, :, crop_param[1]:crop_param[1] + crop_param[3], crop_param[0]:crop_param[0] + crop_param[2]]
if res != rendering.shape[2]:
rendering = F.interpolate(rendering, size=(res, res), mode='bilinear', align_corners=False)
np.save(os.path.join(dst_sub_dir, f'{name}.npy'), rendering[0].permute(1, 2, 0).cpu().numpy().astype(np.float16))
# Compute mouth mask
lms_3d = recon_model.get_lms(transformed_vertices).cpu().squeeze().numpy()
lms_2d = np.round((lms_3d[:, :2] + 1) * 0.5 * res).astype(np.uint8)
mouth_mask = gen_mouth_mask(lms_2d, new_crop=False)
mouth_masks.append([f'{prefix}/{name}.png', mouth_mask.tolist()])
# Visualization
if render_vis:
boxes = torch.tensor([[mouth_mask[2], mouth_mask[0], mouth_mask[3], mouth_mask[1]]])
vis_uvcoords = utils.draw_bounding_boxes(((rendering[0, :-1, :, :] + 1) * 127.5).to(dtype=torch.uint8).cpu(), boxes, colors=(0, 255, 0), width=1)
vis_image = torchvision.transforms.ToPILImage()(vis_uvcoords)
vis_image.save(os.path.join(dst_sub_dir, f'{name}.png'))
def fill_mouth(images):
"""
Fill the mouth area in images.
Args:
images: Input images, shape [batch, 1, H, W].
Returns:
Images with filled mouth regions.
"""
device = images.device
mouth_masks = []
for image in images:
img = (image[0].cpu().numpy() * 255.).astype(np.uint8)
copy_img = img.copy()
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), np.uint8)
cv2.floodFill(copy_img, mask, (0, 0), 255, loDiff=0, upDiff=254, flags=cv2.FLOODFILL_FIXED_RANGE)
copy_img = (torch.tensor(copy_img, device=device).float() / 127.5) - 1
mouth_masks.append(copy_img.unsqueeze(0))
mouth_masks = torch.stack(mouth_masks, dim=0)
mouth_masks = ((mouth_masks * 2 - 1) * -1 + 1) / 2
return torch.clamp(images + mouth_masks, 0, 1)
def rasterize(verts, faces, face_attr, rasterizer, cam_dist=10):
"""Perform rasterization of vertices and faces."""
verts[:, :, 2] += cam_dist
return rasterizer(verts, faces, face_attr, 256, 256)
def ortho_render(verts, faces, face_attr, renderer):
"""Perform orthographic rendering."""
mesh = Meshes(verts, faces.long())
return renderer(mesh, face_attr, need_rgb=False)[-1]
def calculate_new_intrinsic(intr, mode, param):
"""
Calculate new intrinsic matrix based on transformation mode.
Args:
intr: Original intrinsic matrix.
mode: Transformation mode ('resize', 'crop', 'padding').
param: Transformation parameters.
Returns:
Modified intrinsic matrix.
"""
cam_K = intr.copy()
if mode == 'resize':
cam_K[0] *= param[0]
cam_K[1] *= param[1]
elif mode == 'crop':
cam_K[0, 2] -= param[0] # -left
cam_K[1, 2] -= param[1] # -top
elif mode == 'padding':
cam_K[0, 2] += param[2] # + padding left
cam_K[1, 2] += param[0] # + padding top
else:
raise ValueError("Invalid transformation mode")
return cam_K
def make_cam_dataset_FFHQ(tracking_dir, fv2fl_T, focal_ratio=2.568, use_smooth=False, test_data=False):
"""
Create camera dataset for FFHQ.
Args:
tracking_dir: Directory containing tracking data.
fv2fl_T: Transformation matrix from faceverse to face landmarks.
focal_ratio: Camera focal length ratio.
use_smooth: Whether to use smoothed coefficients.
test_data: Whether to create a test dataset.
Returns:
Camera parameters, condition parameters, expression and eye movement parameters.
"""
cam_K = np.eye(3, dtype=np.float32)
cam_K[0, 0] = cam_K[1, 1] = focal_ratio
cam_K[0, 2] = cam_K[1, 2] = 0.5
cam_params, cond_cam_params, fv_exp_eye_params = ({}, {}, {}) if test_data else ([], [], [])
for prefix in tqdm(os.listdir(tracking_dir)):
if not os.path.isdir(os.path.join(tracking_dir, prefix)):
continue
if test_data:
cam_params[prefix], cond_cam_params[prefix], fv_exp_eye_params[prefix] = [], [], []
for name in os.listdir(os.path.join(tracking_dir, prefix)):
if not os.path.exists(os.path.join(tracking_dir, prefix, name, 'finish')):
continue
metaFace_extr = np.load(
os.path.join(tracking_dir, prefix, name,
'metaFace_extr_smooth.npz' if use_smooth else 'metaFace_extr.npz')
)
camT_mesh2cam = metaFace_extr['transformation']
camT_cam2mesh = np.linalg.inv(camT_mesh2cam)
camT_cam2mesh = np.dot(fv2fl_T, camT_cam2mesh)
angle = metaFace_extr['self_angle']
trans = metaFace_extr['self_translation']
coeff = np.load(os.path.join(tracking_dir, prefix, name, 'coeffs.npy'))
exp_coeff = coeff[150:150 + 171] # Expression coefficients
eye_coeff = coeff[572 + 33:572 + 37] # Eye movement coefficients
img_path = f"{prefix}/{name}.png"
cam_data = np.concatenate([camT_cam2mesh.reshape(-1), cam_K.reshape(-1)]).tolist()
cond_data = np.concatenate([angle, trans]).tolist()
expr_eye_data = np.concatenate([exp_coeff, eye_coeff]).tolist()
if test_data:
cam_params[prefix].append([img_path, cam_data])
cond_cam_params[prefix].append([img_path, cond_data])
fv_exp_eye_params[prefix].append([img_path, expr_eye_data])
else:
cam_params.append([img_path, cam_data])
cond_cam_params.append([img_path, cond_data])
fv_exp_eye_params.append([img_path, expr_eye_data])
return cam_params, cond_cam_params, fv_exp_eye_params
|