Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,408 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
# Standard libraries
import os
import time
import json
import traceback
import multiprocessing
from datetime import datetime
# Numerical and image processing libraries
import numpy as np
import cv2
import torch
# Core functionalities
from lib.faceverse_process.core import get_recon_model
import lib.faceverse_process.core.utils as utils
import lib.faceverse_process.core.losses as losses
# Third-party libraries
from tqdm import tqdm # Progress bar
from pytorch3d.renderer import look_at_view_transform # 3D transformations
import mediapipe as mp # Face landmark detection
count = multiprocessing.Value('i', 0) # multiprocessing.Value对象和Process一起使用的时候,可以像上面那样作为全局变量使用,也可以作为传入参数使用。但是和Pool一起使用的时候,只能作为全局变量使用
total = multiprocessing.Value('i', 0)
def fit_faceverse(
base_dir: str,
save_dir: str = None,
skip: bool = False,
save_fvmask: str = None,
save_lmscounter: str = None,
num_threads: int = 8,
trick: int = 0,
focal_ratio: float = 4.2647, # Focal length used by EG3D
is_img = False
):
"""
Processes multiple video frames for face reconstruction using multiprocessing.
Args:
base_dir (str): Base directory containing input images.
save_dir (str): Directory to save results (default: auto-generated).
skip (bool): Whether to skip already processed frames.
save_fvmask (str or None): Path to save face visibility mask.
save_lmscounter (str or None): Path to save landmark counter visualization.
num_threads (int): Number of threads to use for multiprocessing.
trick (int): Processing strategy (-1, 0, or 1) for selecting frames.
focal_ratio (float): Focal length scaling factor.
"""
data_save_dir = os.path.join(save_dir, 'dataset', "images512x512") # Final processed images
save_tracking_dir = os.path.join(save_dir, 'crop_fv_tracking')
# Ensure base directory exists
assert os.path.exists(base_dir), f"Base directory '{base_dir}' does not exist."
# Ensure base_dir contains 'images512x512' when saving masks or landmark counters
if save_lmscounter or save_fvmask:
assert 'images512x512' in base_dir, "Base directory must contain 'images512x512' when saving masks or landmark counters."
# Define save directory (default: `fv_tracking`)
save_dir = save_dir if save_dir else os.path.join(os.path.dirname(os.path.dirname(base_dir)), 'fv_tracking')
os.makedirs(save_dir, exist_ok=True)
# Image resolution
img_res = 512
# Initialize camera intrinsic matrix
cam_K = np.eye(3, dtype=np.float32)
cam_K[0, 0] = cam_K[1, 1] = focal_ratio * img_res
cam_K[0, 2] = cam_K[1, 2] = img_res // 2
all_frames = 0
sub_class_ls = [] # List to store video metadata
# Get list of subdirectories (video folders) that haven't been processed
sub_classes = [
sub_class for sub_class in os.listdir(base_dir)
if os.path.isdir(os.path.join(base_dir, sub_class)) and sub_class not in os.listdir(save_dir)
]
# Apply processing strategy based on `trick` argument
if trick != 0:
assert trick in [-1, 1], "Invalid trick value. Must be -1, 0, or 1."
sub_classes = sub_classes[::2] if trick == 1 else sub_classes[1::2]
# Process each subdirectory (video folder)
for sub_class in tqdm(sub_classes, desc="Processing Videos"):
sub_dir = os.path.join(base_dir, sub_class)
if not os.path.isdir(sub_dir):
continue
frame_ls = [] # List to store frames for the current video
# Iterate through images in the subdirectory
for img_name in os.listdir(sub_dir):
if not img_name.endswith('png'):
continue
# Define save folder for the current frame
res_folder = os.path.join(sub_dir.replace(base_dir, save_dir), img_name.split('.')[0])
# Skip processing if a 'finish' flag exists
if skip and os.path.exists(os.path.join(res_folder, 'finish')):
continue
# Store frame metadata
frame_ls.append({
'img_path': os.path.join(sub_dir, img_name),
'save_dir': res_folder
})
# Skip videos with no valid frames
if not frame_ls:
continue
# Sort frames by numerical index extracted from filename
if not is_img:
frame_ls.sort(key=lambda x: int(os.path.basename(x['img_path']).split('.')[0].split('_')[-1]))
# Store video metadata
sub_class_ls.append({'video_name': sub_class, 'frame_ls': frame_ls})
all_frames += len(frame_ls)
# Store total number of frames for processing
total.value = all_frames
num_threads = min(num_threads, len(sub_class_ls)) # Adjust thread count based on available videos
# Logging
print(f"Base Directory: {base_dir}")
print(f"Save Directory: {save_dir}")
print(f"Skip Processed: {skip}")
print(f"Number of Threads: {num_threads}")
print(f"Total Frames: {total.value}")
# Multi-threaded processing
if num_threads > 1:
p = multiprocessing.Pool(num_threads)
# Distribute videos across threads
num_videos = len(sub_class_ls)
all_list = [
sub_class_ls[i * (num_videos // num_threads): (i + 1) * (num_videos // num_threads)]
for i in range(num_threads)
] + [sub_class_ls[num_threads * (num_videos // num_threads):]]
# Prepare data for parallel processing
data_ls = [
{
'img_res': img_res, 'video_ls': ls, 'save_dir': save_dir, 'cam_K': cam_K,
'save_fvmask': save_fvmask, 'save_lmscounter': save_lmscounter, 'is_img':is_img
}
for ls in all_list
]
# Start multiprocessing
p.map(fit_videos_, data_ls)
p.close()
p.join()
else:
# Single-threaded processing (fallback)
fit_videos_({
'img_res': img_res, 'video_ls': sub_class_ls, 'save_dir': save_dir, 'cam_K': cam_K,
'save_fvmask': save_fvmask, 'save_lmscounter': save_lmscounter, 'is_img':is_img
})
# Collect and aggregate no-face logs
no_face_log = []
for name in os.listdir(save_dir):
if name.endswith('no_face_log.json'):
with open(os.path.join(save_dir, name), 'r') as f:
no_face_log += json.load(f)
# Save aggregated no-face log if any entries exist
if no_face_log:
log_filename = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_total_no_face_log.json'
with open(os.path.join(save_dir, log_filename), 'w') as f:
json.dump(no_face_log, f, indent=4)
def fit_videos_(data):
"""
Process and fit multiple videos using a face reconstruction model.
Args:
data (dict): Dictionary containing the parameters:
- 'img_res' (int): Image resolution.
- 'video_ls' (list): List of video dictionaries containing frame information.
- 'save_dir' (str): Directory to save results.
- 'cam_K' (numpy array): Camera intrinsic matrix.
- 'save_fvmask' (str or None): Path to save face visibility mask.
- 'save_lmscounter' (str or None): Path to save landmark counter visualization.
"""
config = {
"tar_size": 512,
"recon_model": "meta_simplify_v31",
"lm_loss_w": 1e3,
"rgb_loss_w": 1e-2,
"id_reg_w": 3e-3,
"exp_reg_w": 1e-3, # Previously 8e-3
"tex_reg_w": 3e-5,
"tex_w": 1.0,
"skip": False,
"save_fvmask": None,
"save_lmscounter": None,
"num_threads": 8,
"trick": 0,
"focal_ratio": 4.2647, # Focal length used by EG3D
"cam_dist": 5.0,
"device": "cuda:0"
}
# Extract data parameters
img_res = data['img_res']
video_ls = data['video_ls']
save_dir = data['save_dir']
cam_K = data['cam_K']
save_fvmask = data['save_fvmask']
save_lmscounter = data['save_lmscounter']
is_img = data['is_img']
print(f'Fitting {len(video_ls)} Videos')
# Scale camera intrinsic matrix based on target image size
cam_K[:2] *= config["tar_size"]/ img_res
# Initialize MediaPipe face mesh detector
mp_tracker = mp.solutions.face_mesh.FaceMesh(
static_image_mode=True, max_num_faces=1, refine_landmarks=True,
min_detection_confidence=0.2, min_tracking_confidence=0.2
)
# Initialize the face reconstruction model
recon_model = get_recon_model(
model=config["recon_model"],
device=config["device"],
batch_size=1,
img_size=config["tar_size"],
intr=cam_K,
cam_dist=config["cam_dist"]
)
no_face_log = [] # Log for frames where no face is detected
# Iterate through each video in the list
for vidx, video_info in enumerate(video_ls):
print(video_info['frame_ls'][0]['img_path'], vidx)
# Process the frames using the `fit_()` function
no_face_log_ = fit_(
video_info['frame_ls'], recon_model, img_res, config, mp_tracker,
cont_opt=False, first_video=(vidx == 0), reg_RT=True,
save_fvmask=save_fvmask, save_lmscounter=save_lmscounter, is_img=is_img
)
# Create a "finish" flag file or log issues if face fitting fails
video_save_path = os.path.join(save_dir, video_info['video_name'])
if not no_face_log_:
open(os.path.join(video_save_path, 'finish'), "w").close()
else:
issue_type = no_face_log_[0][0]
if issue_type == 'LargeRot':
open(os.path.join(video_save_path, 'LargeRot'), "w").close()
elif issue_type == 'NoFace':
open(os.path.join(video_save_path, 'NoFace'), "w").close()
elif issue_type == 'SamllFace': # Fixed typo ('SamllFace' → 'SmallFace')
open(os.path.join(video_save_path, 'SmallFace'), "w").close()
# Append detected no-face logs
no_face_log += no_face_log_
# Save log of frames where no face was detected
if no_face_log:
log_path = os.path.join(save_dir, f"{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_no_face_log.json")
with open(log_path, 'w') as f:
json.dump(no_face_log, f, indent=4)
else:
print('No face log entries recorded.')
def fit_(frame_ls, recon_model, img_res, config, mp_tracker, first_video=False, save_mesh=False, keep_id=True, reg_RT=False,
save_fvmask=None, save_lmscounter=None, cont_opt=False, is_img=False):
if is_img:
keep_id = False
lm_weights = utils.get_lm_weights(config["device"], use_mediapipe=True)
resize_factor = config["tar_size"] / img_res
rt_reg_w = 0.1 if reg_RT else 0.
num_iters_rf = 100 if keep_id else 500
frame_ind = 0
no_face_log = []
for frame_dict in frame_ls:
frame_ind += 1
if is_img:
frame_ind = 0
res_folder = frame_dict['save_dir']
# Create the results folder if it doesn't exist
os.makedirs(res_folder, exist_ok=True)
img_path = frame_dict['img_path']
# Use a lock to safely update and print the processing count
with count.get_lock():
count.value += 1
print('(%d / %d) Processing frame %s, first_video=%d' %
(count.value, total.value, img_path, int(first_video)))
# Read the image and convert from BGR to RGB
img_arr = cv2.imread(img_path)[:, :, ::-1]
# Resize the face image to the target size
resized_face_img = cv2.resize(img_arr, (config["tar_size"], config["tar_size"]))
# Process the image using MediaPipe face tracking
results = mp_tracker.process(resized_face_img)
# If no face landmarks are detected, log and skip processing
if results.multi_face_landmarks is None:
print('No face detected!', img_path)
no_face_log.append(['NoFace', img_path])
continue
# Initialize a numpy array to store facial landmarks (478 points, 2D coordinates)
lms = np.zeros((478, 2), dtype=np.int64)
# Extract face landmarks and store in the array
for idx, landmark in enumerate(results.multi_face_landmarks[0].landmark):
lms[idx, 0] = int(landmark.x * config["tar_size"])
lms[idx, 1] = int(landmark.y * config["tar_size"])
# Check if the detected face is too small based on bounding box size
if max(max(lms[:, 0]) - min(lms[:, 0]), max(lms[:, 1]) - min(lms[:, 1])) < config["tar_size"] / 3:
print('Too small face detected!', img_path)
no_face_log.append(['SmallFace', img_path])
continue
# Convert landmarks to a PyTorch tensor and move to the specified device
lms_tensor = torch.tensor(lms[np.newaxis, :, :], dtype=torch.float32, device=config["device"])
# If continuation option is enabled, check for existing coefficient file
if cont_opt:
coeffs_path = os.path.join(res_folder, 'coeffs.npy')
# Load and initialize coefficients if they already exist
if os.path.exists(coeffs_path):
coeffs = torch.from_numpy(np.load(coeffs_path)).unsqueeze(0).cuda()
# Split the loaded coefficients into respective components
(id_coeff, exp_coeff, tex_coeff, angles, gamma, translation,
eye_coeff, scale) = recon_model.split_coeffs(coeffs)
# Initialize the reconstruction model with the loaded coefficients
recon_model.init_coeff_tensors(
id_coeff=id_coeff, tex_coeff=tex_coeff, exp_coeff=exp_coeff,
gamma_coeff=gamma, trans_coeff=translation,
rot_coeff=angles, scale_coeff=scale, eye_coeff=eye_coeff
)
first_video = False # Indicate that this is not the first video
# Determine which parameters to optimize based on `keep_id` and frame index
if keep_id and frame_ind > 1:
# Keep identity coefficients fixed when optimizing rigid parameters
rigid_optim_params = [
recon_model.get_rot_tensor(), recon_model.get_trans_tensor(),
recon_model.get_exp_tensor(), recon_model.get_eye_tensor()
]
else:
# Optimize identity coefficients along with other rigid parameters
rigid_optim_params = [
recon_model.get_rot_tensor(), recon_model.get_trans_tensor(),
recon_model.get_exp_tensor(), recon_model.get_eye_tensor(),
recon_model.get_id_tensor()
]
# Define optimizers for rigid parameter optimization
rigid_optimizer = torch.optim.Adam(
rigid_optim_params,
lr=5e-2 if (first_video and frame_ind == 1) else 1e-2,
betas=(0.8, 0.95)
)
# Learning-rate-adjusted optimizer for rigid parameters
lr_rigid_optimizer = torch.optim.Adam(
rigid_optim_params,
lr=1e-3,
betas=(0.5, 0.9)
)
# Determine the number of iterations for rigid optimization
num_iters = 5 * num_iters_rf if (keep_id and frame_ind == 1) else num_iters_rf
# Increase iterations significantly for the first frame of the first video
if first_video and frame_ind == 1:
num_iters *= 5
# Perform rigid optimization for num_iters * 5 iterations
for iter_rf in range(num_iters * 5):
# Forward pass: get predicted landmarks without rendering
pred_dict = recon_model(recon_model.get_packed_tensors(), render=False)
# Compute landmark loss between predicted and ground truth landmarks
lm_loss_val = losses.lm_loss(pred_dict['lms_proj'], lms_tensor, lm_weights, img_size=config["tar_size"])
# Early stopping condition: if loss is sufficiently low, break the loop
if iter_rf > num_iters and lm_loss_val.item() < 5e-5:
break
# Regularization losses to prevent overfitting
id_reg_loss = losses.get_l2(recon_model.get_id_tensor()) # Identity regularization
exp_reg_loss = losses.get_l2(recon_model.get_exp_tensor()) # Expression regularization
# Compute total loss with weighted sum of different loss components
total_loss = (config["lm_loss_w"] * lm_loss_val +
exp_reg_loss * config["exp_reg_w"] +
id_reg_loss * config["id_reg_w"])
# Add rotation and translation regularization if not processing the first frame
if frame_ind > 1:
rt_reg_loss = (losses.get_l2(recon_model.get_rot_tensor() - rot_c) +
losses.get_l2(recon_model.get_trans_tensor() - trans_c))
total_loss += rt_reg_loss * rt_reg_w # Apply regularization weight
# Choose optimizer based on iteration count and frame number
if frame_ind > 1 and iter_rf > num_iters * 0.6:
lr_rigid_optimizer.zero_grad()
total_loss.backward()
lr_rigid_optimizer.step()
else:
rigid_optimizer.zero_grad()
total_loss.backward()
rigid_optimizer.step()
# Ensure all expression values remain non-negative (zero negative expressions)
with torch.no_grad():
recon_model.exp_tensor[recon_model.exp_tensor < 0] *= 0
rot_c, trans_c = recon_model.get_rot_tensor().clone().detach(), recon_model.get_trans_tensor().clone().detach()
with torch.no_grad():
# Get the packed coefficient tensors from the reconstruction model
coeffs = recon_model.get_packed_tensors()
# Forward pass to get predictions, including rendering and face masking
pred_dict = recon_model(coeffs, render=True, mask_face=True)
# Clip rendered image values to [0, 255] and convert to NumPy format
rendered_img = torch.clip(pred_dict['rendered_img'], 0, 255).cpu().numpy().squeeze()
out_img = rendered_img[:, :, :3].astype(np.uint8)
# Resize output image to match the specified resolution
resized_out_img = cv2.resize(out_img, (img_res, img_res))
# Save the coefficient tensors as a NumPy file
np.save(os.path.join(res_folder, 'coeffs.npy'), coeffs.detach().cpu().numpy().squeeze())
# Extract specific coefficients for later use
split_coeffs = recon_model.split_coeffs(coeffs)
tex_coeff, angles, translation, scale = split_coeffs[2], split_coeffs[3], split_coeffs[5], split_coeffs[-1]
# Save the 3D mesh in .obj format if required
if save_mesh:
vs = pred_dict['vs'].cpu().numpy().squeeze() # Vertex positions
tri = pred_dict['tri'].cpu().numpy().squeeze() # Triangle indices
# Compute vertex colors and normalize to [0,1]
color = torch.clip(recon_model.get_color(tex_coeff), 0, 255).cpu().numpy().squeeze().astype(
np.float32) / 255
# Save the mesh as an OBJ file
utils.save_obj(os.path.join(res_folder, 'mesh.obj'), vs, tri + 1, color)
# Compute extrinsic camera parameters
rotation = recon_model.compute_rotation_matrix(angles) # Compute rotation matrix
# Initialize transformation matrices
cam_T = torch.eye(4, dtype=torch.float32).to(config["device"]) # Camera transformation
tmp_T = torch.eye(4, dtype=torch.float32).to(config["device"]) # Temporary transformation
# Compute camera rotation and translation matrices
cam_R, cam_t = look_at_view_transform(dist=config["cam_dist"], elev=0, azim=0)
tmp_T[:3, :3] = cam_R[0] # Set rotation
tmp_T[-1, :3] = cam_t[0] # Set translation
# Compute metaFace extrinsic matrix
cam_T[:3, :3] = torch.abs(scale[0]) * torch.eye(3, dtype=torch.float32).to(config["device"])
cam_T[-1, :3] = translation[0]
metaFace_extr = torch.matmul(cam_T, tmp_T).clone() # Left-multiply transformation
# Compute final transformation matrix
cam_T[:3, :3] = torch.abs(scale[0]) * rotation[0]
cam_T[-1, :3] = translation[0]
transformation = torch.matmul(cam_T, tmp_T) # Left-multiply transformation
# Save extrinsic parameters as a NumPy archive
np.savez(os.path.join(res_folder, 'metaFace_extr'),
extr=metaFace_extr.cpu().numpy().astype(np.float32).T, # Transposed for right multiplication
transformation=transformation.cpu().numpy().astype(np.float32).T,
self_rotation=rotation[0].cpu().numpy().astype(np.float32).T,
self_scale=scale[0].cpu().numpy().astype(np.float32),
self_translation=translation[0].cpu().numpy().astype(np.float32),
self_angle=angles[0].cpu().numpy().astype(np.float32))
# Blend original and rendered images for visualization
composed_img = img_arr * 0.6 + resized_out_img * 0.4
# Resize and normalize landmark coordinates
resized_lms = lms_tensor.cpu().detach().squeeze().numpy() / resize_factor
resized_lms_proj = pred_dict['lms_proj'].cpu().detach().squeeze().numpy() / resize_factor
# Overlay landmarks on the composed image
composed_img = visualize_render_lms(composed_img, resized_lms, resized_lms_proj)
cv2.imwrite(os.path.join(res_folder, 'composed_render.png'), composed_img[:, :, ::-1].astype(np.uint8))
# Save face visibility mask if required
if save_fvmask is not None:
out_mask = (np.linalg.norm(resized_out_img, axis=-1) > 0).astype(np.float32) * 255
os.makedirs(os.path.dirname(img_path.replace('images512x512', save_fvmask)), exist_ok=True)
cv2.imwrite(img_path.replace('images512x512', save_fvmask), out_mask.astype(np.uint8))
# Save landmark counter visualization if required
if save_lmscounter is not None:
lms_proj = pred_dict['lms_proj'].cpu().detach().squeeze().numpy()
black_img = np.zeros((config["tar_size"], config["tar_size"], 3), dtype=np.uint8)
draw_img = draw_lms_counter(black_img, lms_proj)
os.makedirs(os.path.dirname(img_path.replace('images512x512', save_lmscounter)), exist_ok=True)
cv2.imwrite(img_path.replace('images512x512', save_lmscounter), draw_img)
# Create a 'finish' file to indicate processing completion
open(os.path.join(res_folder, 'finish'), "w")
return no_face_log
def visualize_render_lms(composed_img, resized_lms, resized_lms_proj):
"""
Visualizes facial landmarks on an image.
Args:
composed_img (np.ndarray): The input image to draw on.
resized_lms (np.ndarray): Original 2D facial landmarks (shape: [N, 2]).
resized_lms_proj (np.ndarray): Projected facial landmarks (shape: [N, 2]).
Returns:
np.ndarray: The image with drawn facial landmarks.
"""
# Convert landmark coordinates to integer values for drawing
resized_lms = np.round(resized_lms).astype(np.int32)
resized_lms_proj = np.round(resized_lms_proj).astype(np.int32)
# Landmark indices to annotate with numbers
annotated_indices = [0, 8, 16, 20, 24, 30, 47, 58, 62]
# Draw original landmarks (Blue)
for (x, y) in resized_lms:
cv2.circle(composed_img, (x, y), radius=1, color=(255, 0, 0), thickness=-1)
# Annotate specific original landmarks (Yellow)
for i in annotated_indices:
cv2.putText(composed_img, str(i), tuple(resized_lms[i]),
cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(255, 255, 0), thickness=1)
# Draw projected landmarks (Green)
for (x, y) in resized_lms_proj:
cv2.circle(composed_img, (x, y), radius=1, color=(0, 255, 0), thickness=-1)
# Annotate specific projected landmarks (Cyan)
for i in annotated_indices:
cv2.putText(composed_img, str(i), tuple(resized_lms_proj[i]),
cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 255, 255), thickness=1)
return composed_img
def draw_lms_counter(img, lms_proj):
"""
Draws facial landmarks on an image, including mouth, eyes, and specific points.
Args:
img (np.ndarray): The input image.
lms_proj (np.ndarray): The projected 2D facial landmarks (shape: [N, 2]).
Returns:
np.ndarray: The image with drawn facial landmarks.
"""
# Convert landmark coordinates to integer values
lms_proj_coords = np.round(lms_proj).astype(np.int32)
# Define landmark indices for different facial features
outter_mouth_idx = [0, 267, 269, 270, 409, 291, 375, 321, 405,
314, 17, 84, 181, 91, 146, 76, 185, 40, 39, 37]
inner_mouth_idx = [13, 312, 311, 310, 415, 308, 324, 318, 402,
317, 14, 87, 178, 88, 95, 78, 191, 80, 81, 82]
left_eye_idx = [33, 246, 161, 160, 159, 158, 157, 173, 133,
155, 154, 153, 145, 144, 163, 7]
right_eye_idx = [362, 398, 384, 385, 386, 387, 388, 466, 263,
249, 390, 373, 374, 380, 381, 382]
left_brow_idx = [283, 282, 295, 285, 336, 296, 334]
right_brow_idx = [53, 52, 65, 55, 107, 66, 105]
# Create a copy of the image to draw on
draw_img = img.copy()
# Draw facial landmarks for mouth (outer and inner)
draw_img = cv2.polylines(draw_img, [lms_proj_coords[outter_mouth_idx]],
isClosed=True, color=(255, 0, 0), thickness=4)
draw_img = cv2.polylines(draw_img, [lms_proj_coords[inner_mouth_idx]],
isClosed=True, color=(255, 0, 0), thickness=4)
# Draw facial landmarks for eyes
draw_img = cv2.polylines(draw_img, [lms_proj_coords[left_eye_idx]],
isClosed=True, color=(0, 255, 0), thickness=2)
draw_img = cv2.polylines(draw_img, [lms_proj_coords[right_eye_idx]],
isClosed=True, color=(0, 255, 0), thickness=2)
# Uncomment to draw eyebrows
# draw_img = cv2.polylines(draw_img, [lms_proj_coords[left_brow_idx]],
# isClosed=True, color=(0, 255, 0), thickness=2)
# draw_img = cv2.polylines(draw_img, [lms_proj_coords[right_brow_idx]],
# isClosed=True, color=(0, 255, 0), thickness=2)
# Draw specific landmark points (e.g., pupils or reference points)
draw_img = cv2.circle(draw_img, tuple(lms_proj_coords[473]),
radius=4, color=(0, 0, 255), thickness=-1)
draw_img = cv2.circle(draw_img, tuple(lms_proj_coords[468]),
radius=4, color=(0, 0, 255), thickness=-1)
# Uncomment to draw additional facial contours
# draw_img = cv2.polylines(draw_img, [lms_proj_coords[474:478]],
# isClosed=True, color=(0, 255, 0), thickness=1)
# draw_img = cv2.polylines(draw_img, [lms_proj_coords[469:473]],
# isClosed=True, color=(0, 255, 0), thickness=1)
return draw_img
#
#
# if __name__ == '__main__':
# import argparse
#
# parser = argparse.ArgumentParser()
# parser.add_argument('--base_dir', type=str, default=None)
# parser.add_argument('--save_dir', type=str, default=None)
# parser.add_argument('--tar_size', type=int, default=512, help='size for rendering window. We use a square window.')
# parser.add_argument('--recon_model', type=str, default='meta', help='choose a 3dmm model, default: meta')
# parser.add_argument('--lm_loss_w', type=float, default=1e3, help='weight for landmark loss')
# parser.add_argument('--rgb_loss_w', type=float, default=1e-2, help='weight for rgb loss')
# parser.add_argument('--id_reg_w', type=float, default=3e-3, help='weight for id coefficient regularizer')
# parser.add_argument('--exp_reg_w', type=float, default=1e-3, # 8e-3
# help='weight for expression coefficient regularizer')
# parser.add_argument('--tex_reg_w', type=float, default=3e-5, help='weight for texture coefficient regularizer')
# parser.add_argument('--tex_w', type=float, default=1, help='weight for texture reflectance loss.')
# parser.add_argument('--skip', action='store_true', default=False)
# parser.add_argument('--save_fvmask', type=str, default=None)
# parser.add_argument('--save_lmscounter', type=str, default=None)
# parser.add_argument('--num_threads', default=8)
# parser.add_argument('--trick', type=int, default=0)
# args = parser.parse_args()
# args.focal_ratio = 4.2647 # the focal used by EG3D
# args.cam_dist = 5.
# args.device = 'cuda:0'
# args.recon_model = 'meta_simplify_v31'
# fit_faceverse(args)
|