Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,583 Bytes
8f481d2 5c92efe e37e14f 5c92efe e37e14f 8f481d2 bbd0d54 8f481d2 23af8a2 8f481d2 f01c993 8f481d2 bffe79a 8f481d2 bffe79a 8f481d2 23af8a2 8f481d2 23af8a2 8f481d2 23af8a2 8f481d2 23af8a2 8f481d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
import os
import sys
import warnings
import logging
import argparse
import json
import random
from datetime import datetime
import torch
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm
from natsort import natsorted, ns
from einops import rearrange
from omegaconf import OmegaConf
from huggingface_hub import snapshot_download
import spaces
import gradio as gr
import base64
import imageio_ffmpeg as ffmpeg
import subprocess
from different_domain_imge_gen.landmark_generation import generate_annotation
from transformers import (
Dinov2Model, CLIPImageProcessor, CLIPVisionModelWithProjection, AutoImageProcessor
)
from Next3d.training_avatar_texture.camera_utils import LookAtPoseSampler, FOV_to_intrinsics
import recon.dnnlib as dnnlib
import recon.legacy as legacy
from DiT_VAE.diffusion.utils.misc import read_config
from DiT_VAE.vae.triplane_vae import AutoencoderKL as AutoencoderKLTriplane
from DiT_VAE.diffusion import IDDPM, DPMS
from DiT_VAE.diffusion.model.nets import TriDitCLIPDINO_XL_2
from DiT_VAE.diffusion.data.datasets import get_chunks
# Get the directory of the current script
father_path = os.path.dirname(os.path.abspath(__file__))
# Add necessary paths dynamically
sys.path.extend([
os.path.join(father_path, 'recon'),
os.path.join(father_path, 'Next3d'),
os.path.join(father_path, 'data_process'),
os.path.join(father_path, 'data_process/lib')
])
from lib.FaceVerse.renderer import Faceverse_manager
from data_process.input_img_align_extract_ldm_demo import Process
from lib.config.config_demo import cfg
import shutil
# Suppress warnings (especially for PyTorch)
warnings.filterwarnings("ignore")
import os
import subprocess
import sys
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
print(f"[INFO] Downloading CUDA Toolkit from {CUDA_TOOLKIT_URL} ...")
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
print("[INFO] Installing CUDA Toolkit silently ...")
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
print("[INFO] Setting CUDA environment variables ...")
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ.get("PATH", ""))
os.environ["LD_LIBRARY_PATH"] = "%s/lib64:%s" % (
os.environ["CUDA_HOME"],
os.environ.get("LD_LIBRARY_PATH", "")
)
# Optional: set architecture list for compilation (Ampere and Ada)
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9"
print("[INFO] CUDA 12.1 installation complete. CUDA_HOME set to /usr/local/cuda")
# 🔧 Set CUDA_HOME before anything else
install_cuda_toolkit()
# Configure logging settings
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
AutoencoderKL,
)
def get_args():
"""Parse and return command-line arguments."""
parser = argparse.ArgumentParser(description="4D Triplane Generation Arguments")
# Configuration and model checkpoints
parser.add_argument("--config", type=str, default="./configs/infer_config.py",
help="Path to the configuration file.")
# Generation parameters
parser.add_argument("--bs", type=int, default=1,
help="Batch size for processing.")
parser.add_argument("--cfg_scale", type=float, default=4.5,
help="CFG scale parameter.")
parser.add_argument("--sampling_algo", type=str, default="dpm-solver",
choices=["iddpm", "dpm-solver"],
help="Sampling algorithm to be used.")
parser.add_argument("--seed", type=int, default=0,
help="Random seed for reproducibility.")
# parser.add_argument("--select_img", type=str, default=None,
# help="Optional: Select a specific image.")
parser.add_argument('--step', default=-1, type=int)
# parser.add_argument('--use_demo_cam', action='store_true', help="Enable predefined camera parameters")
return parser.parse_args()
def set_env(seed=0):
"""Set random seed for reproducibility across multiple frameworks."""
torch.manual_seed(seed) # Set PyTorch seed
torch.cuda.manual_seed_all(seed) # If using multi-GPU
np.random.seed(seed) # Set NumPy seed
random.seed(seed) # Set Python built-in random module seed
torch.set_grad_enabled(False) # Disable gradients for inference
def to_rgb_image(image: Image.Image):
"""Convert an image to RGB format if necessary."""
if image.mode == 'RGB':
return image
elif image.mode == 'RGBA':
img = Image.new("RGB", image.size, (127, 127, 127))
img.paste(image, mask=image.getchannel('A'))
return img
else:
raise ValueError(f"Unsupported image type: {image.mode}")
def image_process(image_path, clip_image_processor, dino_img_processor, device):
"""Preprocess an image for CLIP and DINO models."""
image = to_rgb_image(Image.open(image_path))
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values.to(device)
dino_image = dino_img_processor(images=image, return_tensors="pt").pixel_values.to(device)
return dino_image, clip_image
# def video_gen(frames_dir, output_path, fps=30):
# """Generate a video from image frames."""
# frame_files = natsorted(os.listdir(frames_dir), alg=ns.PATH)
# frames = [cv2.imread(os.path.join(frames_dir, f)) for f in frame_files]
# H, W = frames[0].shape[:2]
# video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'MP4V'), fps, (W, H))
# for frame in frames:
# video_writer.write(frame)
# video_writer.release()
def trans(tensor_img):
img = (tensor_img.permute(0, 2, 3, 1) * 0.5 + 0.5).clamp(0, 1) * 255.
img = img.to(torch.uint8)
img = img[0].detach().cpu().numpy()
return img
def get_vert(vert_dir):
uvcoords_image = np.load(os.path.join(vert_dir))[..., :3]
uvcoords_image[..., -1][uvcoords_image[..., -1] < 0.5] = 0
uvcoords_image[..., -1][uvcoords_image[..., -1] >= 0.5] = 1
return torch.tensor(uvcoords_image.copy()).float().unsqueeze(0)
def generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature, uncond_clip_feature,
uncond_dino_feature, device, latent_size, sampling_algo):
"""
Generate latent samples using the specified diffusion model.
Args:
DiT_model (torch.nn.Module): The diffusion model.
cfg_scale (float): The classifier-free guidance scale.
sample_steps (int): Number of sampling steps.
clip_feature (torch.Tensor): CLIP feature tensor.
dino_feature (torch.Tensor): DINO feature tensor.
uncond_clip_feature (torch.Tensor): Unconditional CLIP feature tensor.
uncond_dino_feature (torch.Tensor): Unconditional DINO feature tensor.
device (str): Device for computation.
latent_size (tuple): The latent space size.
sampling_algo (str): The sampling algorithm ('iddpm' or 'dpm-solver').
Returns:
torch.Tensor: The generated samples.
"""
n = 1 # Batch size
z = torch.randn(n, 8, latent_size[0], latent_size[1], device=device)
if sampling_algo == 'iddpm':
z = z.repeat(2, 1, 1, 1) # Duplicate for classifier-free guidance
model_kwargs = dict(y=torch.cat([clip_feature, uncond_clip_feature]),
img_feature=torch.cat([dino_feature, dino_feature]),
cfg_scale=cfg_scale)
diffusion = IDDPM(str(sample_steps))
samples = diffusion.p_sample_loop(DiT_model.forward_with_cfg, z.shape, z, clip_denoised=False,
model_kwargs=model_kwargs, progress=True, device=device)
samples, _ = samples.chunk(2, dim=0) # Remove unconditional samples
elif sampling_algo == 'dpm-solver':
dpm_solver = DPMS(DiT_model.forward_with_dpmsolver,
condition=[clip_feature, dino_feature],
uncondition=[uncond_clip_feature, dino_feature],
cfg_scale=cfg_scale)
samples = dpm_solver.sample(z, steps=sample_steps, order=2, skip_type="time_uniform", method="multistep")
else:
raise ValueError(f"Invalid sampling_algo '{sampling_algo}'. Choose either 'iddpm' or 'dpm-solver'.")
return samples
def load_motion_aware_render_model(ckpt_path, device):
"""Load the motion-aware render model from a checkpoint."""
logging.info("Loading motion-aware render model...")
with dnnlib.util.open_url(ckpt_path, 'rb') as f:
network = legacy.load_network_pkl(f) # type: ignore
logging.info("Motion-aware render model loaded.")
return network['G_ema'].to(device)
def load_diffusion_model(ckpt_path, latent_size, device):
"""Load the diffusion model (DiT)."""
logging.info("Loading diffusion model (DiT)...")
DiT_model = TriDitCLIPDINO_XL_2(input_size=latent_size).to(device)
ckpt = torch.load(ckpt_path, map_location="cpu")
# Remove keys that can cause mismatches
for key in ['pos_embed', 'base_model.pos_embed', 'model.pos_embed']:
ckpt['state_dict'].pop(key, None)
ckpt.get('state_dict_ema', {}).pop(key, None)
state_dict = ckpt.get('state_dict_ema', ckpt)
DiT_model.load_state_dict(state_dict, strict=False)
DiT_model.eval()
logging.info("Diffusion model (DiT) loaded.")
return DiT_model
def load_vae_clip_dino(config, device):
"""Load VAE, CLIP, and DINO models."""
logging.info("Loading VAE, CLIP, and DINO models...")
# Load CLIP image encoder
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path)
image_encoder.requires_grad_(False)
image_encoder.to(device)
# Load VAE
config_vae = OmegaConf.load(config.vae_triplane_config_path)
vae_triplane = AutoencoderKLTriplane(ddconfig=config_vae['ddconfig'], lossconfig=None, embed_dim=8)
vae_triplane.to(device)
vae_ckpt_path = os.path.join(config.vae_pretrained, 'pytorch_model.bin')
if not os.path.isfile(vae_ckpt_path):
raise RuntimeError(f"VAE checkpoint not found at {vae_ckpt_path}")
vae_triplane.load_state_dict(torch.load(vae_ckpt_path, map_location="cpu"))
vae_triplane.requires_grad_(False)
# Load DINO model
dinov2 = Dinov2Model.from_pretrained(config.dino_pretrained)
dinov2.requires_grad_(False)
dinov2.to(device)
# Load image processors
dino_img_processor = AutoImageProcessor.from_pretrained(config.dino_pretrained)
clip_image_processor = CLIPImageProcessor()
logging.info("VAE, CLIP, and DINO models loaded.")
return vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor
def prepare_working_dir(dir, style):
print('stylestylestylestylestylestylestyle',style)
if style:
return dir
else:
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir.name
def launch_pretrained():
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="KumaPower/AvatarArtist",
repo_type="model",
local_dir="./pretrained_model",
local_dir_use_symlinks=False
)
snapshot_download(
repo_id="stabilityai/stable-diffusion-2-1-base",
repo_type="model",
local_dir="./pretrained_model/sd21",
local_dir_use_symlinks=False
)
# 下载 CrucibleAI/ControlNetMediaPipeFace 的所有文件
snapshot_download(
repo_id="CrucibleAI/ControlNetMediaPipeFace",
repo_type="model",
local_dir="./pretrained_model/control",
local_dir_use_symlinks=False
)
def prepare_image_list(img_dir, selected_img):
"""Prepare the list of image paths for processing."""
if selected_img and selected_img in os.listdir(img_dir):
return [os.path.join(img_dir, selected_img)]
return sorted([os.path.join(img_dir, img) for img in os.listdir(img_dir)])
def images_to_video(image_folder, output_video, fps=30):
# Get all image files and ensure correct order
images = [img for img in os.listdir(image_folder) if img.endswith((".png", ".jpg", ".jpeg"))]
images = natsorted(images) # Sort filenames naturally to preserve frame order
if not images:
print("❌ No images found in the directory!")
return
# Get the path to the FFmpeg executable
ffmpeg_exe = ffmpeg.get_ffmpeg_exe()
print(f"Using FFmpeg from: {ffmpeg_exe}")
# Define input image pattern (expects images named like "%04d.png")
image_pattern = os.path.join(image_folder, "%04d.png")
# FFmpeg command to encode video
command = [
ffmpeg_exe, '-framerate', str(fps), '-i', image_pattern,
'-c:v', 'libx264', '-preset', 'slow', '-crf', '18', # High-quality H.264 encoding
'-pix_fmt', 'yuv420p', '-b:v', '5000k', # Ensure compatibility & increase bitrate
output_video
]
# Run FFmpeg command
subprocess.run(command, check=True)
print(f"✅ High-quality MP4 video has been generated: {output_video}")
def model_define():
args = get_args()
set_env(args.seed)
input_process_model = Process(cfg)
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.float32
logging.info(f"Running inference with {weight_dtype}")
# Load configuration
default_config = read_config(args.config)
# Ensure valid sampling algorithm
assert args.sampling_algo in ['iddpm', 'dpm-solver', 'sa-solver']
# Load motion-aware render model
motion_aware_render_model = load_motion_aware_render_model(default_config.motion_aware_render_model_ckpt, device)
# Load diffusion model (DiT)
triplane_size = (256 * 4, 256)
latent_size = (triplane_size[0] // 8, triplane_size[1] // 8)
sample_steps = args.step if args.step != -1 else {'iddpm': 100, 'dpm-solver': 20, 'sa-solver': 25}[
args.sampling_algo]
DiT_model = load_diffusion_model(default_config.DiT_model_ckpt, latent_size, device)
# Load VAE, CLIP, and DINO
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor = load_vae_clip_dino(default_config,
device)
# Load normalization parameters
triplane_std = torch.load(default_config.std_dir).to(device).reshape(1, -1, 1, 1, 1)
triplane_mean = torch.load(default_config.mean_dir).to(device).reshape(1, -1, 1, 1, 1)
# Load average latent vector
ws_avg = torch.load(default_config.ws_avg_pkl).to(device)[0]
# Set up face verse for amimation
base_coff = np.load(
'pretrained_model/temp.npy').astype(
np.float32)
base_coff = torch.from_numpy(base_coff).float()
Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)
return motion_aware_render_model, sample_steps, DiT_model, \
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, triplane_std, triplane_mean, ws_avg, Faceverse, device, input_process_model
def duplicate_batch(tensor, batch_size=2):
if tensor is None:
return None # 如果是 None,则直接返回
return tensor.repeat(batch_size, *([1] * (tensor.dim() - 1))) # 复制 batch 维度
@torch.inference_mode()
@spaces.GPU(duration=200)
def avatar_generation(items, save_path_base, video_path_input, source_type, is_styled, styled_img):
"""
Generate avatars from input images.
Args:
items (list): List of image paths.
bs (int): Batch size.
sample_steps (int): Number of sampling steps.
cfg_scale (float): Classifier-free guidance scale.
save_path_base (str): Base directory for saving results.
DiT_model (torch.nn.Module): The diffusion model.
render_model (torch.nn.Module): The rendering model.
std (torch.Tensor): Standard deviation normalization tensor.
mean (torch.Tensor): Mean normalization tensor.
ws_avg (torch.Tensor): Latent average tensor.
"""
if is_styled:
items = [styled_img]
else:
items = [items]
video_folder = "./demo_data/target_video"
video_name = os.path.basename(video_path_input).split(".")[0]
target_path = os.path.join(video_folder, 'data_' + video_name)
exp_base_dir = os.path.join(target_path, 'coeffs')
exp_img_base_dir = os.path.join(target_path, 'images512x512')
motion_base_dir = os.path.join(target_path, 'motions')
label_file_test = os.path.join(target_path, 'images512x512/dataset_realcam.json')
if source_type == 'example':
input_img_fvid = './demo_data/source_img/img_generate_different_domain/coeffs/demo_imgs'
input_img_motion = './demo_data/source_img/img_generate_different_domain/motions/demo_imgs'
elif source_type == 'custom':
input_img_fvid = os.path.join(save_path_base, 'processed_img/dataset/coeffs/input_image')
input_img_motion = os.path.join(save_path_base, 'processed_img/dataset/motions/input_image')
else:
raise ValueError("Wrong type")
bs = 1
sample_steps = 20
cfg_scale = 4.5
pitch_range = 0.25
yaw_range = 0.35
triplane_size = (256 * 4, 256)
latent_size = (triplane_size[0] // 8, triplane_size[1] // 8)
for chunk in tqdm(list(get_chunks(items, 1)), unit='batch'):
if bs != 1:
raise ValueError("Batch size > 1 not implemented")
image_dir = chunk[0]
image_name = os.path.splitext(os.path.basename(image_dir))[0]
dino_img, clip_image = image_process(image_dir, clip_image_processor, dino_img_processor, device)
clip_feature = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
uncond_clip_feature = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
-2]
dino_feature = dinov2(dino_img).last_hidden_state
uncond_dino_feature = dinov2(torch.zeros_like(dino_img)).last_hidden_state
samples = generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature,
uncond_clip_feature, uncond_dino_feature, device, latent_size,
'dpm-solver')
samples = (samples / 0.3994218)
samples = rearrange(samples, "b c (f h) w -> b c f h w", f=4)
samples = vae_triplane.decode(samples)
samples = rearrange(samples, "b c f h w -> b f c h w")
samples = samples * std + mean
torch.cuda.empty_cache()
save_frames_path_out = os.path.join(save_path_base, image_name, 'out')
save_frames_path_outshow = os.path.join(save_path_base, image_name, 'out_show')
save_frames_path_depth = os.path.join(save_path_base, image_name, 'depth')
os.makedirs(save_frames_path_out, exist_ok=True)
os.makedirs(save_frames_path_outshow, exist_ok=True)
os.makedirs(save_frames_path_depth, exist_ok=True)
img_ref = np.array(Image.open(image_dir))
img_ref_out = img_ref.copy()
img_ref = torch.from_numpy(img_ref.astype(np.float32) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0).to(device)
motion_app_dir = os.path.join(input_img_motion, image_name + '.npy')
motion_app = torch.tensor(np.load(motion_app_dir), dtype=torch.float32).unsqueeze(0).to(device)
id_motions = os.path.join(input_img_fvid, image_name + '.npy')
all_pose = json.loads(open(label_file_test).read())['labels']
all_pose = dict(all_pose)
if os.path.exists(id_motions):
coeff = np.load(id_motions).astype(np.float32)
coeff = torch.from_numpy(coeff).to(device).float().unsqueeze(0)
Faceverse.id_coeff = Faceverse.recon_model.split_coeffs(coeff)[0]
motion_dir = os.path.join(motion_base_dir, video_name)
exp_dir = os.path.join(exp_base_dir, video_name)
for frame_index, motion_name in enumerate(
tqdm(natsorted(os.listdir(motion_dir), alg=ns.PATH), desc="Processing Frames")):
exp_each_dir_img = os.path.join(exp_img_base_dir, video_name, motion_name.replace('.npy', '.png'))
exp_each_dir = os.path.join(exp_dir, motion_name)
motion_each_dir = os.path.join(motion_dir, motion_name)
# Load pose data
pose_key = os.path.join(video_name, motion_name.replace('.npy', '.png'))
cam2world_pose = LookAtPoseSampler.sample(
3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
3.14 / 2 - 0.05 + pitch_range * np.cos(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
torch.tensor([0, 0, 0], device=device), radius=2.7, device=device)
pose_show = torch.cat([cam2world_pose.reshape(-1, 16),
FOV_to_intrinsics(fov_degrees=18.837, device=device).reshape(-1, 9)], 1).to(device)
pose = torch.tensor(np.array(all_pose[pose_key]).astype(np.float32)).float().unsqueeze(0).to(device)
# Load and resize expression image
exp_img = np.array(Image.open(exp_each_dir_img).resize((512, 512)))
# Load expression coefficients
exp_coeff = torch.from_numpy(np.load(exp_each_dir).astype(np.float32)).to(device).float().unsqueeze(0)
exp_target = Faceverse.make_driven_rendering(exp_coeff, res=256)
# Load motion data
motion = torch.tensor(np.load(motion_each_dir)).float().unsqueeze(0).to(device)
img_ref_double = duplicate_batch(img_ref, batch_size=2)
motion_app_double = duplicate_batch(motion_app, batch_size=2)
motion_double = duplicate_batch(motion, batch_size=2)
pose_double = torch.cat([pose_show, pose], dim=0)
exp_target_double = duplicate_batch(exp_target, batch_size=2)
samples_double = duplicate_batch(samples, batch_size=2)
# Select refine_net processing method
final_out = render_model(
img_ref_double, None, motion_app_double, motion_double, c=pose_double, mesh=exp_target_double,
triplane_recon=samples_double,
ws_avg=ws_avg, motion_scale=1.
)
# Process output image
final_out_show = trans(final_out['image_sr'][0].unsqueeze(0))
final_out_notshow = trans(final_out['image_sr'][1].unsqueeze(0))
depth = final_out['image_depth'][0].unsqueeze(0)
depth = -depth
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 2 - 1
depth = trans(depth)
depth = np.repeat(depth[:, :, :], 3, axis=2)
# Save output images
frame_name = f'{str(frame_index).zfill(4)}.png'
Image.fromarray(depth, 'RGB').save(os.path.join(save_frames_path_depth, frame_name))
Image.fromarray(final_out_notshow, 'RGB').save(os.path.join(save_frames_path_out, frame_name))
Image.fromarray(final_out_show, 'RGB').save(os.path.join(save_frames_path_outshow, frame_name))
# Generate videos
images_to_video(save_frames_path_out, os.path.join(save_path_base, image_name + '_out.mp4'))
images_to_video(save_frames_path_outshow, os.path.join(save_path_base, image_name + '_outshow.mp4'))
images_to_video(save_frames_path_depth, os.path.join(save_path_base, image_name + '_depth.mp4'))
logging.info(f"✅ Video generation completed successfully!")
return os.path.join(save_path_base, image_name + '_out.mp4'), os.path.join(save_path_base,
image_name + '_outshow.mp4'), os.path.join(save_path_base, image_name + '_depth.mp4')
def get_image_base64(path):
with open(path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f"data:image/png;base64,{encoded_string}"
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def process_image(input_image, source_type, is_style, save_dir):
""" 🎯 处理 input_image,根据是否是示例图片执行不同逻辑 """
process_img_input_dir = os.path.join(save_dir, 'input_image')
process_img_save_dir = os.path.join(save_dir, 'processed_img')
os.makedirs(process_img_save_dir, exist_ok=True)
os.makedirs(process_img_input_dir, exist_ok=True)
if source_type == "example":
return input_image, source_type
else:
# input_process_model.inference(input_image, process_img_save_dir)
shutil.copy(input_image, process_img_input_dir)
input_process_model.inference(process_img_input_dir, process_img_save_dir, is_img=True, is_video=False)
img_name = os.path.basename(input_image)
imge_dir = os.path.join(save_dir, 'processed_img/dataset/images512x512/input_image', img_name)
return imge_dir, source_type # 这里替换成 处理用户上传图片的逻辑
def style_transfer(processed_image, style_prompt, cfg, strength, save_base):
"""
🎭 这个函数用于风格转换
✅ 你可以在这里填入你的风格化代码
"""
src_img_pil = Image.open(processed_image)
img_name = os.path.basename(processed_image)
save_dir = os.path.join(save_base, 'style_img')
os.makedirs(save_dir, exist_ok=True)
control_image = generate_annotation(src_img_pil, max_faces=1)
trg_img_pil = pipeline_sd(
prompt=style_prompt,
image=src_img_pil,
strength=strength,
control_image=Image.fromarray(control_image),
guidance_scale=cfg,
negative_prompt='worst quality, normal quality, low quality, low res, blurry',
num_inference_steps=30,
controlnet_conditioning_scale=1.5
)['images'][0]
trg_img_pil.save(os.path.join(save_dir, img_name))
return os.path.join(save_dir, img_name) # 🚨 这里需要替换成你的风格转换逻辑
def reset_flag():
return False
css = """
/* ✅ 让所有 Image 居中 + 自适应宽度 */
.gr-image img {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 100%;
height: auto;
}
/* ✅ 让所有 Video 居中 + 自适应宽度 */
.gr-video video {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 100%;
height: auto;
}
/* ✅ 可选:让按钮和 markdown 居中 */
#generate_block {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
margin-top: 1rem;
}
/* 可选:让整个容器宽一点 */
#main_container {
max-width: 1280px; /* ✅ 例如限制在 1280px 内 */
margin-left: auto; /* ✅ 水平居中 */
margin-right: auto;
padding-left: 1rem;
padding-right: 1rem;
}
"""
def launch_gradio_app():
styles = {
"Ghibli": "Ghibli style avatar, anime style",
"Pixar": "a 3D render of a face in Pixar style",
"Lego": "a 3D render of a head of a lego man 3D model",
"Greek Statue": "a FHD photo of a white Greek statue",
"Elf": "a FHD photo of a face of a beautiful elf with silver hair in live action movie",
"Zombie": "a FHD photo of a face of a zombie",
"Tekken": "a 3D render of a Tekken game character",
"Devil": "a FHD photo of a face of a devil in fantasy movie",
"Steampunk": "Steampunk style portrait, mechanical, brass and copper tones",
"Mario": "a 3D render of a face of Super Mario",
"Orc": "a FHD photo of a face of an orc in fantasy movie",
"Masque": "a FHD photo of a face of a person in masquerade",
"Skeleton": "a FHD photo of a face of a skeleton in fantasy movie",
"Peking Opera": "a FHD photo of face of character in Peking opera with heavy make-up",
"Yoda": "a FHD photo of a face of Yoda in Star Wars",
"Hobbit": "a FHD photo of a face of Hobbit in Lord of the Rings",
"Stained Glass": "Stained glass style, portrait, beautiful, translucent",
"Graffiti": "Graffiti style portrait, street art, vibrant, urban, detailed, tag",
"Pixel-art": "pixel art style portrait, low res, blocky, pixel art style",
"Retro": "Retro game art style portrait, vibrant colors",
"Ink": "a portrait in ink style, black and white image",
}
with gr.Blocks(analytics_enabled=False, delete_cache=[3600, 3600], css=css, elem_id="main_container") as demo:
logo_url = "./docs/AvatarArtist.png"
logo_base64 = get_image_base64(logo_url)
# 🚀 让 Logo 居中 & 标题对齐
gr.HTML(
f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin-bottom: 20px;">
<img src="{logo_base64}" style="height:50px; margin-right: 15px; display: block;" onerror="this.style.display='none'"/>
<h1 style="font-size: 32px; font-weight: bold;">AvatarArtist: Open-Domain 4D Avatarization</h1>
</div>
"""
)
# 🚀 让按钮在一行对齐
gr.HTML(
"""
<div style="display: flex; justify-content: center; gap: 10px; margin-top: 10px;">
<a title="Website" href="https://kumapowerliu.github.io/AvatarArtist/" target="_blank" rel="noopener noreferrer">
<img src="https://img.shields.io/badge/Website-Visit-blue?style=for-the-badge&logo=GoogleChrome">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2503.19906" target="_blank" rel="noopener noreferrer">
<img src="https://img.shields.io/badge/arXiv-Paper-red?style=for-the-badge&logo=arXiv">
</a>
<a title="Github" href="https://github.com/ant-research/AvatarArtist" target="_blank" rel="noopener noreferrer">
<img src="https://img.shields.io/github/stars/ant-research/AvatarArtist?style=for-the-badge&logo=github&logoColor=white&color=orange">
</a>
</div>
"""
)
gr.HTML(
"""
<div style="color: #333; text-align: left; font-size: 16px; line-height: 1.6; margin-top: 20px; padding: 10px; border: 1px solid #ddd; border-radius: 8px; background-color: #f9f9f9;">
<strong>🧑🎨 How to use this demo:</strong>
<ol style="margin-top: 10px; padding-left: 20px;">
<li><strong>Select or upload a source image</strong> – this will be the avatar's face.</li>
<li><strong>Select or upload a target video</strong> – the avatar will mimic this motion.</li>
<li><strong>Click the <em>Process Image</em> button</strong> – this prepares the source image to meet our model's input requirements.</li>
<li><strong>(Optional)</strong> Click <em>Apply Style</em> to change the appearance of the processed image – we offer a variety of fun styles to choose from!</li>
<li><strong>Click <em>Generate Avatar</em></strong> to create the final animated result driven by the target video.</li>
</ol>
<p style="margin-top: 10px;"><strong>🎨 Tip:</strong> Try different styles to get various artistic effects for your avatar!</p>
</div>
"""
)
# 🚀 添加重要提示框
gr.HTML(
"""
<div style="background-color: #FFDDDD; padding: 15px; border-radius: 10px; border: 2px solid red; text-align: center; margin-top: 20px;">
<h4 style="color: red; font-size: 18px;">
🚨 <strong style="color: red;">Important Notes:</strong> Please try to provide a <u>front-facing</u> or <u>full-face</u> image without obstructions.
</h4>
<p style="color: black; font-size: 16px;">
❌ Our demo does <strong style="color: black;">not</strong> support uploading videos with specific motions because processing requires time.<br>
✅ Feel free to check out our <a href="https://github.com/ant-research/AvatarArtist" target="_blank" style="color: red; font-weight: bold;">GitHub repository</a> to drive portraits using your desired motions.
</p>
</div>
"""
)
# DISPLAY
image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
video_folder = "./demo_data/target_video"
examples_images = sorted(
[os.path.join(image_folder, f) for f in os.listdir(image_folder) if
f.lower().endswith(('.png', '.jpg', '.jpeg'))]
)
examples_videos = sorted(
[os.path.join(video_folder, f) for f in os.listdir(video_folder) if f.lower().endswith('.mp4')]
)
print(examples_videos)
source_type = gr.State("example")
is_from_example = gr.State(value=True)
is_styled = gr.State(value=False)
working_dir = gr.State()
with gr.Row():
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="input_image"):
with gr.TabItem('🎨 Upload Image'):
input_image = gr.Image(
label="Upload Source Image",
value=os.path.join(image_folder, '02057_(2).png'),
image_mode="RGB", height=512, container=True,
sources="upload", type="filepath"
)
def mark_as_example(example_image):
print("✅ mark_as_example called")
return "example", True, False
def mark_as_custom(user_image, is_from_example_flag):
print("✅ mark_as_custom called")
if is_from_example_flag:
print("⚠️ Ignored mark_as_custom triggered by example")
return "example", False, False
return "custom", False, False
input_image.change(
mark_as_custom,
inputs=[input_image, is_from_example],
outputs=[source_type, is_from_example, is_styled] # ✅ 只返回 source_type,不要输出 input_image
)
# ✅ 让 `Examples` 组件单独占一行,并绑定点击事件
with gr.Row():
example_component = gr.Examples(
examples=examples_images,
inputs=[input_image],
examples_per_page=10,
)
# ✅ 监听 `Examples` 的 `click` 事件
example_component.dataset.click(
fn=mark_as_example,
inputs=[input_image],
outputs=[source_type, is_from_example, is_styled]
)
with gr.Column(variant='panel' ):
with gr.Tabs(elem_id="input_video"):
with gr.TabItem('🎬 Target Video'):
video_input = gr.Video(
label="Select Target Motion",
height=512, container=True,interactive=False, format="mp4",
value=examples_videos[0]
)
with gr.Row():
gr.Examples(
examples=examples_videos,
inputs=[video_input],
examples_per_page=10,
)
with gr.Column(variant='panel' ):
with gr.Tabs(elem_id="processed_image"):
with gr.TabItem('🖼️ Processed Image'):
processed_image = gr.Image(
label="Processed Image",
image_mode="RGB", type="filepath",
elem_id="processed_image",
height=512, container=True,
interactive=False
)
processed_image_button = gr.Button("🔧 Process Image", variant="primary")
with gr.Column(variant='panel' ):
with gr.Tabs(elem_id="style_transfer"):
with gr.TabItem('🎭 Style Transfer'):
style_image = gr.Image(
label="Style Image",
image_mode="RGB", type="filepath",
elem_id="style_image",
height=512, container=True,
interactive=False
)
style_choice = gr.Dropdown(
choices=list(styles.keys()),
label="Choose Style",
value="Pixar"
)
cfg_slider = gr.Slider(
minimum=3.0, maximum=10.0, value=7.5, step=0.1,
label="CFG Scale"
)
strength_slider = gr.Slider(
minimum=0.4, maximum=0.85, value=0.65, step=0.05,
label="SDEdit Strength"
)
style_button = gr.Button("🎨 Apply Style", interactive=False)
gr.Markdown(
"⬅️ Please click **Process Image** first. "
"**Apply Style** will transform the image in the **Processed Image** panel "
"according to the selected style."
)
with gr.Row():
with gr.Tabs(elem_id="render_output"):
with gr.TabItem('🎥 Animation Results'):
# ✅ 让 `Generate Avatar` 按钮单独占一行
with gr.Row():
with gr.Column(scale=1, elem_id="generate_block", min_width=200):
submit = gr.Button('🚀 Generate Avatar', elem_id="avatarartist_generate", variant='primary',
interactive=False)
gr.Markdown("⬇️ Please click **Process Image** first before generating.",
elem_id="generate_tip")
# ✅ 让两个 `Animation Results` 窗口并排
with gr.Row():
output_video = gr.Video(
label="Generated Animation Input Video View",
format="mp4", height=512, width=512,
autoplay=True
)
output_video_2 = gr.Video(
label="Generated Animation Rotate View",
format="mp4", height=512, width=512,
autoplay=True
)
output_video_3 = gr.Video(
label="Generated Animation Rotate View Depth",
format="mp4", height=512, width=512,
autoplay=True
)
def apply_style_and_mark(processed_image, style_choice, cfg, strength, working_dir):
styled = style_transfer(processed_image, styles[style_choice], cfg, strength, working_dir)
return styled, True
def process_image_and_enable_style(input_image, source_type, is_styled, wd):
processed_result, updated_source_type = process_image(input_image, source_type, is_styled, wd)
return processed_result, updated_source_type, gr.update(interactive=True), gr.update(interactive=True)
processed_image_button.click(
fn=prepare_working_dir,
inputs=[working_dir, is_styled],
outputs=[working_dir],
queue=False,
).success(
fn=process_image_and_enable_style,
inputs=[input_image, source_type, is_styled, working_dir],
outputs=[processed_image, source_type, style_button, submit],
queue=True
)
style_button.click(
fn=apply_style_and_mark,
inputs=[processed_image, style_choice, cfg_slider, strength_slider, working_dir],
outputs=[style_image, is_styled]
)
submit.click(
fn=avatar_generation,
inputs=[processed_image, working_dir, video_input, source_type, is_styled, style_image],
outputs=[output_video, output_video_2, output_video_3], # ⏳ 稍后展示视频
queue=True
)
demo.queue()
demo.launch(server_name="0.0.0.0")
if __name__ == '__main__':
import torch.multiprocessing as mp
mp.set_start_method('spawn', force=True)
launch_pretrained()
image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
example_img_names = os.listdir(image_folder)
render_model, sample_steps, DiT_model, \
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, std, mean, ws_avg, Faceverse, device, input_process_model = model_define()
controlnet_path = './pretrained_model/control'
controlnet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=torch.float16
)
sd_path = './pretrained_model/sd21'
pipeline_sd = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
sd_path, torch_dtype=torch.float16,
use_safetensors=True, controlnet=controlnet, variant="fp16"
).to(device)
demo_cam = False
launch_gradio_app()
|