Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,469 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
from os import device_encoding
from turtle import update
import math
import torch
import numpy as np
import torch.nn.functional as F
import cv2
import torchvision
from torch_utils import persistence
from recon.models.stylegannext3D.networks_stylegan2_new import Generator as StyleGAN2Backbone_cond
from recon.volumetric_rendering.renderer import ImportanceRenderer, ImportanceRenderer_bsMotion
from recon.volumetric_rendering.ray_sampler import RaySampler, RaySampler_zxc
import dnnlib
from recon.volumetric_rendering.renderer import fill_mouth
@persistence.persistent_class
class TriPlaneGenerator(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
topology_path=None, #
sr_num_fp16_res=0,
mapping_kwargs={}, # Arguments for MappingNetwork.
rendering_kwargs={},
sr_kwargs={},
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
self.renderer = ImportanceRenderer_bsMotion()
self.ray_sampler = RaySampler_zxc()
self.texture_backbone = StyleGAN2Backbone_cond(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32, mapping_kwargs=mapping_kwargs,
**synthesis_kwargs) # render neural texture
self.face_backbone = StyleGAN2Backbone_cond(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32, mapping_kwargs=mapping_kwargs,
**synthesis_kwargs)
self.backbone = StyleGAN2Backbone_cond(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32 * 3, mapping_ws=self.texture_backbone.num_ws,
mapping_kwargs=mapping_kwargs, **synthesis_kwargs)
self.superresolution = dnnlib.util.construct_class_by_name(class_name='recon.models.stylegannext3D.superresolution.SuperresolutionHybrid8XDC', channels=32,
img_resolution=img_resolution, sr_num_fp16_res=sr_num_fp16_res,
sr_antialias=rendering_kwargs['sr_antialias'], **sr_kwargs)
self.decoder = OSGDecoder(32, {'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1), 'decoder_output_dim': 32})
self.neural_rendering_resolution = 128
self.rendering_kwargs = rendering_kwargs
self.fill_mouth = True
def mapping(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False):
if self.rendering_kwargs['c_gen_conditioning_zero']:
c = torch.zeros_like(c)
c = c[:, :self.c_dim] # remove expression labels
return self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi,
truncation_cutoff=truncation_cutoff, update_emas=update_emas)
def visualize_mesh_condition(self, mesh_condition, to_imgs=False):
uvcoords_image = mesh_condition['uvcoords_image'].clone().permute(0, 3, 1, 2) # [B, C, H, W]
ori_alpha_image = uvcoords_image[:, 2:].clone()
full_alpha_image, mouth_masks = fill_mouth(ori_alpha_image, blur_mouth_edge=False)
# upper_mouth_mask = mouth_masks.clone()
# upper_mouth_mask[:, :, :87] = 0
# alpha_image = torch.clamp(ori_alpha_image + upper_mouth_mask, min=0, max=1)
if to_imgs:
uvcoords_image[full_alpha_image.expand(-1, 3, -1, -1) == 0] = -1
uvcoords_image = ((uvcoords_image+1)*127.5).to(dtype=torch.uint8).cpu()
vis_images = []
for vis_uvcoords in uvcoords_image:
vis_images.append(torchvision.transforms.ToPILImage()(vis_uvcoords))
return vis_images
else:
return uvcoords_image
def synthesis(self, ws, c, mesh_condition, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False,
return_featmap=False, evaluation=False, **synthesis_kwargs):
batch_size = ws.shape[0]
# cam = c[:, -25:]
cam = c
cam2world_matrix = cam[:, :16].view(-1, 4, 4)
intrinsics = cam[:, 16:25].view(-1, 3, 3)
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
# print(self.neural_rendering_resolution)
# Create a batch of rays for volume rendering
ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
texture_feats = self.texture_backbone.synthesis(ws, cond_list=None, return_list=True, update_emas=update_emas, **synthesis_kwargs)
static_feats = self.backbone.synthesis(ws, cond_list=None, return_list=True, update_emas=update_emas, **synthesis_kwargs)
static_plane = static_feats[-1]
static_plane = static_plane.view(len(static_plane), 3, 32, static_plane.shape[-2], static_plane.shape[-1])
static_feats[0] = static_feats[0].view(len(static_plane), 3, 32, static_feats[0].shape[-2], static_feats[0].shape[-1])[:, 0]
static_feats[-1] = static_plane[:, 0]
assert len(static_feats) == len(texture_feats)
bbox_256 = [57, 185, 64, 192] # the face region is the center-crop result from the frontal triplane.
rendering_images, full_alpha_image, mouth_masks = self.rasterize(texture_feats, mesh_condition , static_feats, bbox_256)
rendering_stitch = self.face_backbone.synthesis(ws, rendering_images, return_list=False, update_emas=update_emas, **synthesis_kwargs)
rendering_stitch_, full_alpha_image_ = torch.zeros_like(rendering_stitch), torch.zeros_like(full_alpha_image)
rendering_stitch_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(rendering_stitch, size=(128, 128), mode='bilinear', antialias=True)
full_alpha_image_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(full_alpha_image, size=(128, 128), mode='bilinear', antialias=True)
full_alpha_image, rendering_stitch = full_alpha_image_, rendering_stitch_
# blend features of neural texture and tri-plane
full_alpha_image = torch.cat((full_alpha_image, torch.zeros_like(full_alpha_image), torch.zeros_like(full_alpha_image)), 1).unsqueeze(2)
rendering_stitch = torch.cat((rendering_stitch, torch.zeros_like(rendering_stitch), torch.zeros_like(rendering_stitch)), 1)
rendering_stitch = rendering_stitch.view(*static_plane.shape)
blended_planes = rendering_stitch * full_alpha_image + static_plane * (1 - full_alpha_image)
# Perform volume rendering
if evaluation:
assert 'noise_mode' in synthesis_kwargs.keys() and synthesis_kwargs['noise_mode'] == 'const', \
('noise_mode' in synthesis_kwargs.keys(), synthesis_kwargs['noise_mode'] == 'const')
feature_samples, depth_samples, weights_samples = self.renderer(blended_planes, self.decoder, ray_origins, ray_directions,
self.rendering_kwargs, evaluation=evaluation)
# Reshape into 'raw' neural-rendered image
H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# Run superresolution to get final image
rgb_image = feature_image[:, :3]
# rgb_image = weights_samples * rgb_image + (1 - weights_samples) * torch.ones_like(rgb_image)
sr_image = self.superresolution(rgb_image, feature_image, ws, noise_mode=self.rendering_kwargs['superresolution_noise_mode'],
**{k: synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
if return_featmap:
return {'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image,
'image_feature': feature_image, 'triplane': blended_planes, 'texture': texture_feats, 'static_plane': static_plane, 'rendering_stitch': rendering_stitch}#static_plane, 'texture_map': texture_feats[-2]}
else:
return {'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image}
def synthesis_withTexture(self, ws, texture_feats, c, mesh_condition, static_feats=None, neural_rendering_resolution=None, update_emas=False,
cache_backbone=False, use_cached_backbone=False, evaluation=False, **synthesis_kwargs):
bs = ws.shape[0]
# eg3d_ws, texture_ws = ws[:, :self.texture_backbone.num_ws], ws[:, self.texture_backbone.num_ws:]
# cam = c[:, :25]
cam = c[:, -25:]
cam2world_matrix = cam[:, :16].view(-1, 4, 4)
intrinsics = cam[:, 16:25].view(-1, 3, 3)
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
# Create a batch of rays for volume rendering
ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
if static_feats is None:
static_feats = self.backbone.synthesis(ws, cond_list=None, return_list=True, update_emas=update_emas, **synthesis_kwargs)
static_plane = static_feats[-1].view(bs, 3, 32, static_feats[-1].shape[-2], static_feats[-1].shape[-1])
assert len(static_feats) == len(texture_feats), (len(static_feats), len(texture_feats))
bbox_256 = [57, 185, 64, 192]
rendering_images, full_alpha_image, mouth_masks = self.rasterize(texture_feats, mesh_condition['uvcoords_image'], bbox_256=bbox_256,
static_feats=[static_feats[0].view(bs, 3, 32, static_feats[0].shape[-2], static_feats[0].shape[-1])[:, 0]] +
static_feats[1:-1] + [static_plane[:, 0]])
rendering_stitch = self.face_backbone.synthesis(ws, rendering_images, return_list=False, update_emas=update_emas, **synthesis_kwargs)
# upper_mouth_mask = mouth_masks.clone()
# upper_mouth_mask[:, :, :87] = 0
# rendering_stitch = F.interpolate(static_plane[:, 0, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]], size=(256, 256), mode='bilinear',
# antialias=True) * upper_mouth_mask + rendering_stitch * (1 - upper_mouth_mask)
rendering_stitch_, full_alpha_image_ = torch.zeros_like(rendering_stitch), torch.zeros_like(full_alpha_image)
rendering_stitch_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(rendering_stitch, size=(128, 128), mode='bilinear', antialias=True)
full_alpha_image_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(full_alpha_image, size=(128, 128), mode='bilinear', antialias=True)
full_alpha_image, rendering_stitch = full_alpha_image_, rendering_stitch_
# blend features of neural texture and tri-plane
full_alpha_image = torch.cat((full_alpha_image, torch.zeros_like(full_alpha_image), torch.zeros_like(full_alpha_image)), 1).unsqueeze(2)
rendering_stitch = torch.cat((rendering_stitch, torch.zeros_like(rendering_stitch), torch.zeros_like(rendering_stitch)), 1)
rendering_stitch = rendering_stitch.view(*static_plane.shape)
blended_planes = rendering_stitch * full_alpha_image + static_plane * (1 - full_alpha_image)
# if flag is not False:
# import cv2
# with torch.no_grad():
# if not hasattr(self, 'weight'):
# self.weight = torch.nn.Conv2d(32, 3, 1).weight.cuda()
# weight = self.weight
# vis = torch.nn.functional.conv2d((rendering_stitch * full_alpha_image)[:, 0, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]], weight)
# max_ = [torch.max(torch.abs(vis[:, i])) for i in range(3)]
# for i in range(3): vis[:, i] /= max_[i]
# print('rendering_stitch', vis.max().item(), vis.min().item())
# vis = torch.cat([vis[i] for i in range(blended_planes.shape[0])], dim=-1)
# vis = (vis.permute(1, 2, 0).clamp(min=-1.0, max=1.0) + 1.) * 127.5
# cv2.imwrite('vis_%s_rendering_stitch.png' % flag, vis.cpu().numpy().astype(np.uint8)[..., ::-1])
# vis = torch.nn.functional.conv2d((static_plane * (1 - full_alpha_image))[:, 0], weight)
# for i in range(3): vis[:, i] /= max_[i]
# print('static_plane', vis.max().item(), vis.min().item())
# vis = torch.cat([vis[i] for i in range(blended_planes.shape[0])], dim=-1)
# vis = (vis.permute(1, 2, 0).clamp(min=-1.0, max=1.0) + 1.) * 127.5
# cv2.imwrite('vis_%s_static_plane.png' % flag, vis.cpu().numpy().astype(np.uint8)[..., ::-1])
# vis = torch.nn.functional.conv2d(blended_planes[:, 0], weight)
# for i in range(3): vis[:, i] /= max_[i]
# print('blended_planes', vis.max().item(), vis.min().item())
# vis = torch.cat([vis[i] for i in range(blended_planes.shape[0])], dim=-1)
# vis = (vis.permute(1, 2, 0).clamp(min=-1.0, max=1.0) + 1.) * 127.5
# cv2.imwrite('vis_%s_blended_planes.png' % flag, vis.cpu().numpy().astype(np.uint8)[..., ::-1])
# Perform volume rendering
if evaluation:
assert 'noise_mode' in synthesis_kwargs.keys() and synthesis_kwargs['noise_mode']=='const',\
('noise_mode' in synthesis_kwargs.keys(), synthesis_kwargs['noise_mode']=='const')
feature_samples, depth_samples, weights_samples = self.renderer(blended_planes, self.decoder, ray_origins, ray_directions,
self.rendering_kwargs, evaluation=evaluation)
# Reshape into 'raw' neural-rendered image
H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# Run superresolution to get final image
rgb_image = feature_image[:, :3]
sr_image = self.superresolution(rgb_image, feature_image, ws, noise_mode=self.rendering_kwargs['superresolution_noise_mode'],
**{k: synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
return {'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image,
'feature_image': feature_image, 'triplane': blended_planes}#static_plane, 'texture_map': texture_feats[-2]}
def synthesis_withCondition(self, ws, c, mesh_condition, gt_texture_feats=None, gt_static_feats=None, texture_feats_conditions=None,
static_feats_conditions=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False,
use_cached_backbone=False, only_image=False, return_feats=False, **synthesis_kwargs):
bs = ws.shape[0]
cam = c[:, -25:]
cam2world_matrix = cam[:, :16].view(-1, 4, 4)
intrinsics = cam[:, 16:25].view(-1, 3, 3)
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
# Create a batch of rays for volume rendering
ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
if gt_texture_feats is None:
texture_feats = self.texture_backbone.synthesis(ws, cond_list=None, return_list=True, feat_conditions=texture_feats_conditions,
update_emas=update_emas, **synthesis_kwargs)
if gt_static_feats is None:
static_feats = self.backbone.synthesis(ws, cond_list=None, return_list=True, feat_conditions=static_feats_conditions,
update_emas=update_emas, **synthesis_kwargs)
static_plane = static_feats[-1].view(bs, 3, 32, static_feats[-1].shape[-2], static_feats[-1].shape[-1])
assert len(static_feats) == len(texture_feats)
bbox_256 = [57, 185, 64, 192]
rendering_images, full_alpha_image, mouth_masks = self.rasterize(texture_feats, mesh_condition['uvcoords_image'], bbox_256=bbox_256,
static_feats=[static_feats[0].view(bs, 3, 32, static_feats[0].shape[-2], static_feats[0].shape[-1])[:, 0]] +
static_feats[1:-1] + [static_plane[:, 0]])
rendering_stitch = self.face_backbone.synthesis(ws, rendering_images, return_list=False, update_emas=update_emas, **synthesis_kwargs)
rendering_stitch_, full_alpha_image_ = torch.zeros_like(rendering_stitch), torch.zeros_like(full_alpha_image)
rendering_stitch_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(rendering_stitch, size=(128, 128), mode='bilinear', antialias=True)
full_alpha_image_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(full_alpha_image, size=(128, 128), mode='bilinear', antialias=True)
full_alpha_image, rendering_stitch = full_alpha_image_, rendering_stitch_
# blend features of neural texture and tri-plane
full_alpha_image = torch.cat((full_alpha_image, torch.zeros_like(full_alpha_image), torch.zeros_like(full_alpha_image)), 1).unsqueeze(2)
rendering_stitch = torch.cat((rendering_stitch, torch.zeros_like(rendering_stitch), torch.zeros_like(rendering_stitch)), 1)
rendering_stitch = rendering_stitch.view(*static_plane.shape)
blended_planes = rendering_stitch * full_alpha_image + static_plane * (1 - full_alpha_image)
# Perform volume rendering
evaluation = 'noise_mode' in synthesis_kwargs.keys() and synthesis_kwargs['noise_mode']=='const'
feature_samples, depth_samples, weights_samples = self.renderer(blended_planes, self.decoder, ray_origins, ray_directions,
self.rendering_kwargs, evaluation=evaluation)
# Reshape into 'raw' neural-rendered image
H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# Run superresolution to get final image
rgb_image = feature_image[:, :3]
sr_image = self.superresolution(rgb_image, feature_image, ws, noise_mode=self.rendering_kwargs['superresolution_noise_mode'],
**{k: synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
if only_image:
return {'image': sr_image}
out = {'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image, 'feature_image': feature_image, 'triplane': blended_planes}
if return_feats:
out['static'] = static_feats
out['texture'] = texture_feats
return out
def rasterize(self, texture_feats, uvcoords_image, static_feats, bbox_256):
'''
uvcoords_image [B, H, W, C]
'''
if not uvcoords_image.dtype == torch.float32: uvcoords_image = uvcoords_image.float()
grid, alpha_image = uvcoords_image[..., :2], uvcoords_image[..., 2:].permute(0, 3, 1, 2)
full_alpha_image, mouth_masks = fill_mouth(alpha_image.clone(), blur_mouth_edge=False)
upper_mouth_mask = mouth_masks.clone()
upper_mouth_mask[:, :, :87] = 0
upper_mouth_alpha_image = torch.clamp(alpha_image + upper_mouth_mask, min=0, max=1)
rendering_images = []
for idx, texture in enumerate(texture_feats):
res = texture.shape[2]
bbox = [round(i * res / 256) for i in bbox_256]
rendering_image = F.grid_sample(texture, grid, align_corners=False)
rendering_feat = F.interpolate(rendering_image, size=(res, res), mode='bilinear', antialias=True)
alpha_image_ = F.interpolate(alpha_image, size=(res, res), mode='bilinear', antialias=True)
static_feat = F.interpolate(static_feats[idx][:, :, bbox[0]:bbox[1], bbox[2]:bbox[3]], size=(res, res), mode='bilinear', antialias=True)
rendering_images.append(torch.cat([
rendering_feat * alpha_image_ + static_feat * (1 - alpha_image_),
F.interpolate(upper_mouth_alpha_image, size=(res, res), mode='bilinear', antialias=True)], dim=1))
# print('rendering_images', grid.shape, rendering_images[-1].shape)
return rendering_images, full_alpha_image, mouth_masks
def sample(self, coordinates, directions, z, c, mesh_condition, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
batch_size = ws.shape[0]
texture_feats = self.texture_backbone.synthesis(ws, cond_list=None, return_list=True, update_emas=update_emas, **synthesis_kwargs)
static_feats = self.backbone.synthesis(ws, cond_list=None, return_list=True, update_emas=update_emas, **synthesis_kwargs)
static_plane = static_feats[-1]
static_plane = static_plane.view(len(static_plane), 3, 32, static_plane.shape[-2], static_plane.shape[-1])
static_feats[0] = static_feats[0].view(len(static_plane), 3, 32, static_feats[0].shape[-2], static_feats[0].shape[-1])[:, 0]
static_feats[-1] = static_plane[:, 0]
assert len(static_feats) == len(texture_feats)
bbox_256 = [57, 185, 64, 192]
rendering_images, full_alpha_image, mouth_masks = self.rasterize(texture_feats, mesh_condition['uvcoords_image'], static_feats, bbox_256)
rendering_stitch = self.face_backbone.synthesis(ws, rendering_images, return_list=False, update_emas=update_emas, **synthesis_kwargs)
rendering_stitch_, full_alpha_image_ = torch.zeros_like(rendering_stitch), torch.zeros_like(full_alpha_image)
rendering_stitch_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(rendering_stitch, size=(128, 128), mode='bilinear',
antialias=True)
full_alpha_image_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(full_alpha_image, size=(128, 128), mode='bilinear',
antialias=True)
full_alpha_image, rendering_stitch = full_alpha_image_, rendering_stitch_
# blend features of neural texture and tri-plane
full_alpha_image = torch.cat((full_alpha_image, torch.zeros_like(full_alpha_image), torch.zeros_like(full_alpha_image)), 1).unsqueeze(2)
rendering_stitch = torch.cat((rendering_stitch, torch.zeros_like(rendering_stitch), torch.zeros_like(rendering_stitch)), 1)
rendering_stitch = rendering_stitch.view(*static_plane.shape)
blended_planes = rendering_stitch * full_alpha_image + static_plane * (1 - full_alpha_image)
return self.renderer.run_model(blended_planes, self.decoder, coordinates, directions, self.rendering_kwargs)
def sample_mixed(self, coordinates, directions, ws, mesh_condition, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z'
batch_size = ws.shape[0]
texture_feats = self.texture_backbone.synthesis(ws, cond_list=None, return_list=True, update_emas=update_emas, **synthesis_kwargs)
static_feats = self.backbone.synthesis(ws, cond_list=None, return_list=True, update_emas=update_emas, **synthesis_kwargs)
static_plane = static_feats[-1]
static_plane = static_plane.view(len(static_plane), 3, 32, static_plane.shape[-2], static_plane.shape[-1])
static_feats[0] = static_feats[0].view(len(static_plane), 3, 32, static_feats[0].shape[-2], static_feats[0].shape[-1])[:, 0]
static_feats[-1] = static_plane[:, 0]
assert len(static_feats) == len(texture_feats)
bbox_256 = [57, 185, 64, 192]
rendering_images, full_alpha_image, mouth_masks = self.rasterize(texture_feats, mesh_condition['uvcoords_image'], static_feats, bbox_256)
rendering_stitch = self.face_backbone.synthesis(ws, rendering_images, return_list=False, update_emas=update_emas, **synthesis_kwargs)
rendering_stitch_, full_alpha_image_ = torch.zeros_like(rendering_stitch), torch.zeros_like(full_alpha_image)
rendering_stitch_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(rendering_stitch, size=(128, 128), mode='bilinear',
antialias=True)
full_alpha_image_[:, :, bbox_256[0]:bbox_256[1], bbox_256[2]:bbox_256[3]] = F.interpolate(full_alpha_image, size=(128, 128), mode='bilinear',
antialias=True)
full_alpha_image, rendering_stitch = full_alpha_image_, rendering_stitch_
# blend features of neural texture and tri-plane
full_alpha_image = torch.cat((full_alpha_image, torch.zeros_like(full_alpha_image), torch.zeros_like(full_alpha_image)), 1).unsqueeze(2)
rendering_stitch = torch.cat((rendering_stitch, torch.zeros_like(rendering_stitch), torch.zeros_like(rendering_stitch)), 1)
rendering_stitch = rendering_stitch.view(*static_plane.shape)
blended_planes = rendering_stitch * full_alpha_image + static_plane * (1 - full_alpha_image)
return self.renderer.run_model(blended_planes, self.decoder, coordinates, directions, self.rendering_kwargs)
def forward(self, z, c, v, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False,
use_cached_backbone=False, **synthesis_kwargs):
# Render a batch of generated images.
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
return self.synthesis(ws, c, v, update_emas=update_emas, neural_rendering_resolution=neural_rendering_resolution,
cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs)
from training.networks_stylegan2 import FullyConnectedLayer
class OSGDecoder(torch.nn.Module):
def __init__(self, n_features, options):
super().__init__()
self.hidden_dim = 64
self.net = torch.nn.Sequential(
FullyConnectedLayer(n_features, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']),
torch.nn.Softplus(),
FullyConnectedLayer(self.hidden_dim, 1 + options['decoder_output_dim'], lr_multiplier=options['decoder_lr_mul'])
)
def forward(self, sampled_features, ray_directions, sampled_embeddings=None):
# Aggregate features
sampled_features = sampled_features.mean(1)
x = sampled_features
N, M, C = x.shape
x = x.view(N * M, C)
x = self.net(x)
x = x.view(N, M, -1)
rgb = torch.sigmoid(x[..., 1:]) * (1 + 2 * 0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
sigma = x[..., 0:1]
return {'rgb': rgb, 'sigma': sigma} |