PolyThink-Alpha / App.py
KuberMehta's picture
Adding a "best answer"
048c938 verified
raw
history blame
48.9 kB
import os
import asyncio
import gradio as gr
import logging
from huggingface_hub import InferenceClient
import cohere
import google.generativeai as genai
from anthropic import Anthropic
import openai
from typing import List, Dict, Any, Optional
from dotenv import load_dotenv
# Load environment variables from .env file if it exists
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Agent Class ---
class PolyThinkAgent:
def __init__(self, model_name: str, model_path: str, role: str = "solver", api_provider: str = None):
self.model_name = model_name
self.model_path = model_path
self.role = role
self.api_provider = api_provider
self.clients = {}
self.hf_token = None
self.inference = None
def set_clients(self, clients: Dict[str, Any]):
"""Set the API clients for this agent"""
self.clients = clients
if "huggingface" in clients:
self.hf_token = clients["huggingface"]
if self.hf_token:
self.inference = InferenceClient(token=self.hf_token)
async def solve_problem(self, problem: str) -> Dict[str, Any]:
"""Generate a solution to the given problem"""
try:
if self.api_provider == "cohere" and "cohere" in self.clients:
response = self.clients["cohere"].chat(
model=self.model_path,
message=f"""
PROBLEM: {problem}
INSTRUCTIONS:
- Provide a clear, concise solution in one sentence.
- Include brief reasoning in one additional sentence.
- Do not repeat the solution or add extraneous text.
"""
)
solution = response.text.strip()
return {"solution": solution, "model_name": self.model_name}
elif self.api_provider == "anthropic" and "anthropic" in self.clients:
response = self.clients["anthropic"].messages.create(
model=self.model_path,
messages=[{
"role": "user",
"content": f"""
PROBLEM: {problem}
INSTRUCTIONS:
- Provide a clear, concise solution in one sentence.
- Include brief reasoning in one additional sentence.
- Do not repeat the solution or add extraneous text.
"""
}]
)
solution = response.content[0].text.strip()
return {"solution": solution, "model_name": self.model_name}
elif self.api_provider == "openai" and "openai" in self.clients:
response = self.clients["openai"].chat.completions.create(
model=self.model_path,
max_tokens=100,
messages=[{
"role": "user",
"content": f"""
PROBLEM: {problem}
INSTRUCTIONS:
- Provide a clear, concise solution in one sentence.
- Include brief reasoning in one additional sentence.
- Do not repeat the solution or add extraneous text.
- Keep the response under 100 characters.
"""
}]
)
solution = response.choices[0].message.content.strip()
return {"solution": solution, "model_name": self.model_name}
elif self.api_provider == "huggingface" and self.inference:
prompt = f"""
PROBLEM: {problem}
INSTRUCTIONS:
- Provide a clear, concise solution in one sentence.
- Include brief reasoning in one additional sentence.
- Do not repeat the solution or add extraneous text.
- Keep the response under 100 characters.
SOLUTION AND REASONING:
"""
result = self.inference.text_generation(
prompt, model=self.model_path, max_new_tokens=5000, temperature=0.5
)
solution = result if isinstance(result, str) else result.generated_text
return {"solution": solution.strip(), "model_name": self.model_name}
elif self.api_provider == "gemini" and "gemini" in self.clients:
model = self.clients["gemini"].GenerativeModel(self.model_path)
try:
response = model.generate_content(
f"""
PROBLEM: {problem}
INSTRUCTIONS:
- Provide a clear, concise solution in one sentence.
- Include brief reasoning in one additional sentence.
- Do not repeat the solution or add extraneous text.
- Keep the response under 100 characters.
""",
generation_config=genai.types.GenerationConfig(
temperature=0.5,
)
)
# Check response validity and handle different response structures
try:
# First try to access text directly if available
if hasattr(response, 'text'):
solution = response.text.strip()
# Otherwise check for candidates
elif hasattr(response, 'candidates') and response.candidates:
# Make sure we have candidates and parts before accessing
if hasattr(response.candidates[0], 'content') and hasattr(response.candidates[0].content, 'parts'):
solution = response.candidates[0].content.parts[0].text.strip()
else:
logger.warning(f"Gemini response has candidates but missing content structure: {response}")
solution = "Error parsing API response; incomplete response structure."
else:
# Fallback for when candidates is empty
logger.warning(f"Gemini API returned no candidates: {response}")
solution = "No solution generated; API returned empty response."
except Exception as e:
logger.error(f"Error extracting text from Gemini response: {e}, response: {response}")
solution = "Error parsing API response."
except Exception as e:
logger.error(f"Gemini API call failed: {e}")
solution = f"API error: {str(e)}"
return {"solution": solution, "model_name": self.model_name}
else:
return {"solution": f"Error: Missing API configuration for {self.api_provider}", "model_name": self.model_name}
except Exception as e:
logger.error(f"Error in {self.model_name}: {str(e)}")
return {"solution": f"Error: {str(e)}", "model_name": self.model_name}
async def evaluate_solutions(self, problem: str, solutions: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Evaluate solutions from solver agents"""
try:
prompt = f"""
PROBLEM: {problem}
SOLUTIONS:
1. {solutions[0]['model_name']}: {solutions[0]['solution']}
2. {solutions[1]['model_name']}: {solutions[1]['solution']}
INSTRUCTIONS:
- Extract the numerical final answer from each solution (e.g., 68 from '16 + 52 = 68').
- Extract the key reasoning steps from each solution.
- Apply strict evaluation criteria:
* Numerical answers must match EXACTLY (including units and precision).
* Key reasoning steps must align in approach and logic.
- Output exactly: 'AGREEMENT: YES' if BOTH the numerical answers AND reasoning align perfectly.
- Output 'AGREEMENT: NO' followed by a one-sentence explanation if either the answers or reasoning differ in ANY way.
- Be conservative in declaring agreement - when in doubt, declare disagreement.
- Do not add scoring, commentary, or extraneous text.
EVALUATION:
"""
if self.api_provider == "gemini" and "gemini" in self.clients:
# Instantiate the model for consistency and clarity
model = self.clients["gemini"].GenerativeModel(self.model_path)
# Use generate_content on the model instance
response = model.generate_content(
prompt,
generation_config=genai.types.GenerationConfig(
temperature=0.5,
)
)
# Handle potential empty response or missing text attribute
try:
# First try to access text directly if available
if hasattr(response, 'text'):
judgment = response.text.strip()
# Otherwise check for candidates
elif hasattr(response, 'candidates') and response.candidates:
# Make sure we have candidates and parts before accessing
if hasattr(response.candidates[0], 'content') and hasattr(response.candidates[0].content, 'parts'):
judgment = response.candidates[0].content.parts[0].text.strip()
else:
logger.warning(f"Gemini response has candidates but missing content structure: {response}")
judgment = "AGREEMENT: NO - Unable to evaluate due to API response structure issue."
else:
# Fallback for when candidates is empty
logger.warning(f"Empty response from Gemini API: {response}")
judgment = "AGREEMENT: NO - Unable to evaluate due to API response issue."
except Exception as e:
logger.error(f"Error extracting text from Gemini response: {e}")
judgment = "AGREEMENT: NO - Unable to evaluate due to API response issue."
return {"judgment": judgment, "reprompt_needed": "AGREEMENT: NO" in judgment.upper()}
elif self.api_provider == "openai" and "openai" in self.clients:
response = self.clients["openai"].chat.completions.create(
model=self.model_path,
max_tokens=200,
messages=[{"role": "user", "content": prompt}]
)
judgment = response.choices[0].message.content.strip()
return {"judgment": judgment, "reprompt_needed": "AGREEMENT: NO" in judgment.upper()}
elif self.api_provider == "huggingface" and self.inference:
result = self.inference.text_generation(
prompt, model=self.model_path, max_new_tokens=200, temperature=0.5
)
judgment = result if isinstance(result, str) else result.generated_text
return {"judgment": judgment.strip(), "reprompt_needed": "AGREEMENT: NO" in judgment.upper()}
else:
return {"judgment": f"Error: Missing API configuration for {self.api_provider}", "reprompt_needed": False}
except Exception as e:
logger.error(f"Error in judge: {str(e)}")
return {"judgment": f"Error: {str(e)}", "reprompt_needed": False}
async def reprompt_with_context(self, problem: str, solutions: List[Dict[str, Any]], judgment: str) -> Dict[str, Any]:
"""Generate a revised solution based on previous solutions and judgment"""
try:
prompt = f"""
PROBLEM: {problem}
PREVIOUS SOLUTIONS:
1. {solutions[0]['model_name']}: {solutions[0]['solution']}
2. {solutions[1]['model_name']}: {solutions[1]['solution']}
JUDGE FEEDBACK: {judgment}
INSTRUCTIONS:
- Provide a revised, concise solution in one sentence.
- Include brief reasoning in one additional sentence.
- Address the judge's feedback.
"""
if self.api_provider == "cohere" and "cohere" in self.clients:
response = self.clients["cohere"].chat(
model=self.model_path,
message=prompt
)
solution = response.text.strip()
return {"solution": solution, "model_name": self.model_name}
elif self.api_provider == "anthropic" and "anthropic" in self.clients:
response = self.clients["anthropic"].messages.create(
model=self.model_path,
max_tokens=100,
messages=[{"role": "user", "content": prompt}]
)
solution = response.content[0].text.strip()
return {"solution": solution, "model_name": self.model_name}
elif self.api_provider == "openai" and "openai" in self.clients:
response = self.clients["openai"].chat.completions.create(
model=self.model_path,
max_tokens=100,
messages=[{"role": "user", "content": prompt}]
)
solution = response.choices[0].message.content.strip()
return {"solution": solution, "model_name": self.model_name}
elif self.api_provider == "huggingface" and self.inference:
prompt += "\nREVISED SOLUTION AND REASONING:"
result = self.inference.text_generation(
prompt, model=self.model_path, max_new_tokens=500, temperature=0.5
)
solution = result if isinstance(result, str) else result.generated_text
return {"solution": solution.strip(), "model_name": self.model_name}
elif self.api_provider == "gemini" and "gemini" in self.clients:
# Instantiate the model for consistency and clarity
model = self.clients["gemini"].GenerativeModel(self.model_path)
# Use generate_content
response = model.generate_content(
f"""
PROBLEM: {problem}
PREVIOUS SOLUTIONS:
1. {solutions[0]['model_name']}: {solutions[0]['solution']}
2. {solutions[1]['model_name']}: {solutions[1]['solution']}
JUDGE FEEDBACK: {judgment}
INSTRUCTIONS:
- Provide a revised, concise solution in one sentence.
- Include brief reasoning in one additional sentence.
- Address the judge's feedback.
""",
generation_config=genai.types.GenerationConfig(
temperature=0.5,
max_output_tokens=100
)
)
# Handle potential empty response or missing text attribute
try:
# First try to access text directly if available
if hasattr(response, 'text'):
solution = response.text.strip()
# Otherwise check for candidates
elif hasattr(response, 'candidates') and response.candidates:
# Make sure we have candidates and parts before accessing
if hasattr(response.candidates[0], 'content') and hasattr(response.candidates[0].content, 'parts'):
solution = response.candidates[0].content.parts[0].text.strip()
else:
logger.warning(f"Gemini response has candidates but missing content structure: {response}")
solution = "Unable to generate a solution due to API response structure issue."
else:
# Fallback for when candidates is empty
logger.warning(f"Empty response from Gemini API: {response}")
solution = "Unable to generate a solution due to API response issue."
except Exception as e:
logger.error(f"Error extracting text from Gemini response: {e}")
solution = "Unable to generate a solution due to API response issue."
return {"solution": solution, "model_name": self.model_name}
else:
return {"solution": f"Error: Missing API configuration for {self.api_provider}", "model_name": self.model_name}
except Exception as e:
logger.error(f"Error in {self.model_name}: {str(e)}")
return {"solution": f"Error: {str(e)}", "model_name": self.model_name}
# --- Model Registry ---
class ModelRegistry:
@staticmethod
def get_available_models():
"""Get the list of available models grouped by provider (original list)"""
return {
"Anthropic": [
{"name": "Claude 3.5 Sonnet", "id": "claude-3-5-sonnet-20240620", "provider": "anthropic", "type": ["solver"], "icon": "πŸ“œ"},
{"name": "Claude 3.7 Sonnet", "id": "claude-3-7-sonnet-20250219", "provider": "anthropic", "type": ["solver"], "icon": "πŸ“œ"},
{"name": "Claude 3 Opus", "id": "claude-3-opus-20240229", "provider": "anthropic", "type": ["solver"], "icon": "πŸ“œ"},
{"name": "Claude 3 Haiku", "id": "claude-3-haiku-20240307", "provider": "anthropic", "type": ["solver"], "icon": "πŸ“œ"}
],
"OpenAI": [
{"name": "GPT-4o", "id": "gpt-4o", "provider": "openai", "type": ["solver"], "icon": "πŸ€–"},
{"name": "GPT-4 Turbo", "id": "gpt-4-turbo", "provider": "openai", "type": ["solver"], "icon": "πŸ€–"},
{"name": "GPT-4", "id": "gpt-4", "provider": "openai", "type": ["solver"], "icon": "πŸ€–"},
{"name": "GPT-3.5 Turbo", "id": "gpt-3.5-turbo", "provider": "openai", "type": ["solver"], "icon": "πŸ€–"},
{"name": "OpenAI o1", "id": "o1", "provider": "openai", "type": ["solver", "judge"], "icon": "πŸ€–"},
{"name": "OpenAI o3", "id": "o3", "provider": "openai", "type": ["solver", "judge"], "icon": "πŸ€–"}
],
"Cohere": [
{"name": "Cohere Command R", "id": "command-r-08-2024", "provider": "cohere", "type": ["solver"], "icon": "πŸ’¬"},
{"name": "Cohere Command R+", "id": "command-r-plus-08-2024", "provider": "cohere", "type": ["solver"], "icon": "πŸ’¬"}
],
"Google": [
{"name": "Gemini 1.5 Pro", "id": "gemini-1.5-pro", "provider": "gemini", "type": ["solver"], "icon": "🌟"},
{"name": "Gemini 2.0 Flash Thinking Experimental 01-21", "id": "gemini-2.0-flash-thinking-exp-01-21", "provider": "gemini", "type": ["solver", "judge"], "icon": "🌟"},
{"name": "Gemini 2.5 Pro Experimental 03-25", "id": "gemini-2.5-pro-exp-03-25", "provider": "gemini", "type": ["solver", "judge"], "icon": "🌟"}
],
"HuggingFace": [
{"name": "Llama 3.3 70B Instruct", "id": "meta-llama/Llama-3.3-70B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Llama 3.2 3B Instruct", "id": "meta-llama/Llama-3.2-3B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Llama 3.1 70B Instruct", "id": "meta-llama/Llama-3.1-70B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Mistral 7B Instruct v0.3", "id": "mistralai/Mistral-7B-Instruct-v0.3", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "DeepSeek R1 Distill Qwen 32B", "id": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "provider": "huggingface", "type": ["solver", "judge"], "icon": "πŸ”₯"},
{"name": "DeepSeek Coder V2 Instruct", "id": "deepseek-ai/DeepSeek-Coder-V2-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Qwen 2.5 72B Instruct", "id": "Qwen/Qwen2.5-72B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Qwen 2.5 Coder 32B Instruct", "id": "Qwen/Qwen2.5-Coder-32B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Qwen 2.5 Math 1.5B Instruct", "id": "Qwen/Qwen2.5-Math-1.5B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Gemma 3 27B Instruct", "id": "google/gemma-3-27b-it", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"},
{"name": "Phi-3 Mini 4K Instruct", "id": "microsoft/Phi-3-mini-4k-instruct", "provider": "huggingface", "type": ["solver"], "icon": "πŸ”₯"}
]
}
@staticmethod
def get_solver_models():
"""Get models suitable for solver role with provider grouping"""
all_models = ModelRegistry.get_available_models()
solver_models = {}
for provider, models in all_models.items():
provider_models = []
for model in models:
if "solver" in model["type"]:
provider_models.append({
"name": f"{model['icon']} {model['name']} ({provider})",
"id": model["id"],
"provider": model["provider"]
})
if provider_models:
solver_models[provider] = provider_models
return solver_models
@staticmethod
def get_judge_models():
"""Get only specific reasoning models suitable for judge role with provider grouping"""
all_models = ModelRegistry.get_available_models()
judge_models = {}
allowed_judge_models = [
"Gemini 2.0 Flash Thinking Experimental 01-21 (Google)",
"DeepSeek R1 (HuggingFace)",
"Gemini 2.5 Pro Experimental 03-25 (Google)",
"OpenAI o1 (OpenAI)",
"OpenAI o3 (OpenAI)"
]
for provider, models in all_models.items():
provider_models = []
for model in models:
full_name = f"{model['name']} ({provider})"
if "judge" in model["type"] and full_name in allowed_judge_models:
provider_models.append({
"name": f"{model['icon']} {model['name']} ({provider})",
"id": model["id"],
"provider": model["provider"]
})
if provider_models:
judge_models[provider] = provider_models
return judge_models
# --- Orchestrator Class ---
class PolyThinkOrchestrator:
def __init__(self, solver1_config=None, solver2_config=None, judge_config=None, api_clients=None):
self.solvers = []
self.judge = None
self.api_clients = api_clients or {}
if solver1_config:
solver1 = PolyThinkAgent(
model_name=solver1_config["name"].split(" ", 1)[1].rsplit(" (", 1)[0] if " " in solver1_config["name"] else solver1_config["name"],
model_path=solver1_config["id"],
api_provider=solver1_config["provider"]
)
solver1.set_clients(self.api_clients)
self.solvers.append(solver1)
if solver2_config:
solver2 = PolyThinkAgent(
model_name=solver2_config["name"].split(" ", 1)[1].rsplit(" (", 1)[0] if " " in solver2_config["name"] else solver2_config["name"],
model_path=solver2_config["id"],
api_provider=solver2_config["provider"]
)
solver2.set_clients(self.api_clients)
self.solvers.append(solver2)
if judge_config:
self.judge = PolyThinkAgent(
model_name=judge_config["name"].split(" ", 1)[1].rsplit(" (", 1)[0] if " " in judge_config["name"] else judge_config["name"],
model_path=judge_config["id"],
role="judge",
api_provider=judge_config["provider"]
)
self.judge.set_clients(self.api_clients)
async def get_initial_solutions(self, problem: str) -> List[Dict[str, Any]]:
tasks = [solver.solve_problem(problem) for solver in self.solvers]
return await asyncio.gather(*tasks)
async def get_judgment(self, problem: str, solutions: List[Dict[str, Any]]) -> Dict[str, Any]:
if self.judge:
return await self.judge.evaluate_solutions(problem, solutions)
return {"judgment": "No judge configured", "reprompt_needed": False}
async def get_revised_solutions(self, problem: str, solutions: List[Dict[str, Any]], judgment: str) -> List[Dict[str, Any]]:
tasks = [solver.reprompt_with_context(problem, solutions, judgment) for solver in self.solvers]
return await asyncio.gather(*tasks)
def generate_final_report(self, problem: str, history: List[Dict[str, Any]]) -> str:
report = f"""
<div class="final-report-container">
<h2 class="final-report-title">πŸ” Final Analysis Report</h2>
<div class="problem-container">
<h3 class="problem-title">Problem Statement</h3>
<div class="problem-content">{problem}</div>
</div>
"""
# Add best answer section if there's agreement
last_judgment = next((step.get("judgment", "") for step in reversed(history) if "judgment" in step), "")
if "AGREEMENT: YES" in last_judgment.upper():
# Get the last solutions before agreement
last_solutions = next((step["solutions"] for step in reversed(history) if "solutions" in step), None)
if last_solutions:
report += f"""
<div class="best-answer-container agreement">
<h3>Best Answer</h3>
<div class="best-answer-content">
<div class="best-answer-icon">✨</div>
<div class="best-answer-text">
<p><strong>Agreed Solution:</strong> {last_solutions[0]['solution']}</p>
<p><strong>Models:</strong> {last_solutions[0]['model_name']} & {last_solutions[1]['model_name']}</p>
</div>
</div>
</div>
"""
report += """
<div class="timeline-container">
"""
for i, step in enumerate(history, 1):
if "solutions" in step and i == 1:
report += f"""
<div class="timeline-item">
<div class="timeline-marker">1</div>
<div class="timeline-content">
<h4>Initial Solutions</h4>
<div class="solutions-container">
"""
for sol in step["solutions"]:
report += f"""
<div class="solution-item">
<div class="solution-header">{sol['model_name']}</div>
<div class="solution-body">{sol['solution']}</div>
</div>
"""
report += """
</div>
</div>
</div>
"""
elif "judgment" in step:
is_agreement = "AGREEMENT: YES" in step["judgment"].upper()
judgment_class = "agreement" if is_agreement else "disagreement"
judgment_icon = "βœ…" if is_agreement else "❌"
report += f"""
<div class="timeline-item">
<div class="timeline-marker">{i}</div>
<div class="timeline-content">
<h4>Evaluation {(i+1)//2}</h4>
<div class="judgment-container {judgment_class}">
<div class="judgment-icon">{judgment_icon}</div>
<div class="judgment-text">{step["judgment"]}</div>
</div>
</div>
</div>
"""
elif "solutions" in step and i > 1:
round_num = (i+1)//2
report += f"""
<div class="timeline-item">
<div class="timeline-marker">{i}</div>
<div class="timeline-content">
<h4>Revised Solutions (Round {round_num})</h4>
<div class="solutions-container">
"""
for sol in step["solutions"]:
report += f"""
<div class="solution-item">
<div class="solution-header">{sol['model_name']}</div>
<div class="solution-body">{sol['solution']}</div>
</div>
"""
report += """
</div>
</div>
</div>
"""
last_judgment = next((step.get("judgment", "") for step in reversed(history) if "judgment" in step), "")
if "AGREEMENT: YES" in last_judgment.upper():
confidence = "100%" if len(history) == 2 else "80%"
report += f"""
<div class="conclusion-container agreement">
<h3>Conclusion</h3>
<div class="conclusion-content">
<div class="conclusion-icon">βœ…</div>
<div class="conclusion-text">
<p>Models reached <strong>AGREEMENT</strong></p>
<p>Confidence level: <strong>{confidence}</strong></p>
</div>
</div>
</div>
"""
else:
report += f"""
<div class="conclusion-container disagreement">
<h3>Conclusion</h3>
<div class="conclusion-content">
<div class="conclusion-icon">❓</div>
<div class="conclusion-text">
<p>Models could not reach agreement</p>
<p>Review all solutions above for best answer</p>
</div>
</div>
</div>
"""
report += """
</div>
</div>
"""
return report
# --- Gradio Interface ---
def create_polythink_interface():
custom_css = """
/* Reverted to Original Black Theme */
body {
background: #000000;
color: #ffffff;
font-family: 'Arial', sans-serif;
}
.gradio-container {
background: #1a1a1a;
border-radius: 10px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.5);
padding: 20px;
}
.gr-button {
background: linear-gradient(45deg, #666666, #999999);
color: #ffffff;
border: none;
padding: 10px 20px;
border-radius: 5px;
transition: all 0.3s ease;
}
.gr-button:hover {
background: linear-gradient(45deg, #555555, #888888);
transform: translateY(-2px);
}
.gr-textbox {
background: #333333;
color: #ffffff;
border: 1px solid #444444;
border-radius: 5px;
padding: 10px;
}
.gr-slider {
background: #333333;
border-radius: 5px;
}
.gr-slider .track-fill {
background: #cccccc;
}
.step-section {
background: #1a1a1a;
border-radius: 8px;
padding: 15px;
margin-bottom: 20px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.3);
}
.step-section h3 {
color: #cccccc;
margin-top: 0;
font-size: 1.5em;
}
.step-section p {
color: #aaaaaa;
line-height: 1.6;
}
.step-section code {
background: #333333;
padding: 2px 6px;
border-radius: 3px;
color: #ff6b6b;
}
.step-section strong {
color: #ffffff;
}
.status-bar {
background: #1a1a1a;
padding: 10px;
border-radius: 5px;
font-size: 1.1em;
margin-bottom: 20px;
border-left: 4px solid #666666;
}
/* Agreement/Disagreement styling */
.agreement {
color: #4CAF50 !important;
border: 1px solid #4CAF50;
background-color: rgba(76, 175, 80, 0.1) !important;
padding: 10px;
border-radius: 5px;
}
.disagreement {
color: #F44336 !important;
border: 1px solid #F44336;
background-color: rgba(244, 67, 54, 0.1) !important;
padding: 10px;
border-radius: 5px;
}
/* Enhanced Final Report Styling */
.final-report {
background: #111111;
padding: 0;
border-radius: 8px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.5);
margin-top: 20px;
overflow: hidden;
}
.final-report-container {
font-family: 'Arial', sans-serif;
}
.final-report-title {
background: linear-gradient(45deg, #333333, #444444);
color: #ffffff;
padding: 20px;
margin: 0;
border-bottom: 1px solid #555555;
font-size: 24px;
text-align: center;
}
.problem-container {
background: #222222;
padding: 15px 20px;
margin: 0;
border-bottom: 1px solid #333333;
}
.problem-title {
color: #bbbbbb;
margin: 0 0 10px 0;
font-size: 18px;
}
.problem-content {
background: #333333;
padding: 15px;
border-radius: 5px;
font-family: monospace;
font-size: 16px;
color: #ffffff;
}
.timeline-container {
padding: 20px;
}
.timeline-item {
display: flex;
margin-bottom: 25px;
position: relative;
}
.timeline-item:before {
content: '';
position: absolute;
left: 15px;
top: 30px;
bottom: -25px;
width: 2px;
background: #444444;
z-index: 0;
}
.timeline-item:last-child:before {
display: none;
}
.timeline-marker {
width: 34px;
height: 34px;
border-radius: 50%;
background: #333333;
display: flex;
align-items: center;
justify-content: center;
font-weight: bold;
position: relative;
z-index: 1;
border: 2px solid #555555;
margin-right: 15px;
}
.timeline-content {
flex: 1;
background: #1d1d1d;
border-radius: 5px;
padding: 15px;
border: 1px solid #333333;
}
.timeline-content h4 {
margin-top: 0;
margin-bottom: 15px;
color: #cccccc;
border-bottom: 1px solid #333333;
padding-bottom: 8px;
}
.solutions-container {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
.solution-item {
flex: 1;
min-width: 250px;
background: #252525;
border-radius: 5px;
overflow: hidden;
border: 1px solid #383838;
}
.solution-header {
background: #333333;
padding: 8px 12px;
font-weight: bold;
color: #dddddd;
border-bottom: 1px solid #444444;
}
.solution-body {
padding: 12px;
color: #bbbbbb;
}
.judgment-container {
display: flex;
align-items: center;
padding: 10px;
border-radius: 5px;
}
.judgment-icon {
font-size: 24px;
margin-right: 15px;
}
.conclusion-container {
margin-top: 30px;
border-radius: 5px;
padding: 5px 15px 15px;
}
.conclusion-content {
display: flex;
align-items: center;
}
.conclusion-icon {
font-size: 36px;
margin-right: 20px;
}
.conclusion-text {
flex: 1;
}
.conclusion-text p {
margin: 5px 0;
}
/* Header styling */
.app-header {
background: linear-gradient(45deg, #222222, #333333);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
border: 1px solid #444444;
}
.app-title {
font-size: 28px;
margin: 0 0 10px 0;
background: -webkit-linear-gradient(45deg, #cccccc, #ffffff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
display: inline-block;
}
.app-subtitle {
font-size: 16px;
color: #aaaaaa;
margin: 0;
}
/* Button style */
.primary-button {
background: linear-gradient(45deg, #555555, #777777) !important;
border: none !important;
color: white !important;
padding: 12px 24px !important;
font-weight: bold !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3) !important;
}
.primary-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 15px rgba(0, 0, 0, 0.4) !important;
background: linear-gradient(45deg, #666666, #888888) !important;
}
/* Best Answer styling */
.best-answer-container {
background: #1a1a1a;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.5);
border: 1px solid #4CAF50;
}
.best-answer-container h3 {
color: #4CAF50;
margin-top: 0;
margin-bottom: 15px;
font-size: 1.5em;
}
.best-answer-content {
display: flex;
align-items: flex-start;
gap: 15px;
}
.best-answer-icon {
font-size: 24px;
color: #4CAF50;
}
.best-answer-text {
flex: 1;
}
.best-answer-text p {
margin: 5px 0;
color: #ffffff;
}
.best-answer-text strong {
color: #4CAF50;
}
"""
# Hardcoded model configurations
solver1_config = {
"name": "Cohere Command R",
"id": "command-r-08-2024",
"provider": "cohere"
}
solver2_config = {
"name": "Llama 3.2 3B Instruct",
"id": "meta-llama/Llama-3.2-3B-Instruct",
"provider": "huggingface"
}
judge_config = {
"name": "Gemini 2.0 Flash Thinking Experimental 01-21",
"id": "gemini-2.0-flash-thinking-exp-01-21",
"provider": "gemini"
}
async def solve_problem(problem: str, max_rounds: int):
# Get API keys from environment variables or Hugging Face secrets
api_clients = {}
# Cohere client
cohere_key = os.getenv("COHERE_API_KEY")
if cohere_key:
api_clients["cohere"] = cohere.Client(cohere_key)
# Hugging Face client
hf_key = os.getenv("HF_API_KEY")
if hf_key:
api_clients["huggingface"] = hf_key
# Gemini client
gemini_key = os.getenv("GEMINI_API_KEY")
if gemini_key:
genai.configure(api_key=gemini_key)
api_clients["gemini"] = genai
# Anthropic client
anthropic_key = os.getenv("ANTHROPIC_API_KEY")
if anthropic_key:
api_clients["anthropic"] = Anthropic(api_key=anthropic_key)
# OpenAI client
openai_key = os.getenv("OPENAI_API_KEY")
if openai_key:
api_clients["openai"] = openai.OpenAI(api_key=openai_key)
# Check if all required API keys are present
required_providers = {solver1_config["provider"], solver2_config["provider"], judge_config["provider"]}
missing_keys = [p for p in required_providers if p not in api_clients]
if missing_keys:
yield [
gr.update(value=f"Error: Missing API keys for {', '.join(missing_keys)}", visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=f"### Status: ❌ Missing API keys for {', '.join(missing_keys)}", visible=True)
]
return
orchestrator = PolyThinkOrchestrator(solver1_config, solver2_config, judge_config, api_clients)
initial_solutions = await orchestrator.get_initial_solutions(problem)
initial_content = f"## Initial Solutions\n**Problem:** `{problem}`\n\n**Solutions:**\n- **{initial_solutions[0]['model_name']}**: {initial_solutions[0]['solution']}\n- **{initial_solutions[1]['model_name']}**: {initial_solutions[1]['solution']}"
yield [
gr.update(value=initial_content, visible=True),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="### Status: πŸ“‹ Initial solutions generated", visible=True)
]
await asyncio.sleep(1)
solutions = initial_solutions
history = [{"solutions": initial_solutions}]
max_outputs = max(int(max_rounds) * 2, 6)
round_outputs = [""] * max_outputs
for round_num in range(int(max_rounds)):
judgment = await orchestrator.get_judgment(problem, solutions)
history.append({"judgment": judgment["judgment"]})
is_agreement = "AGREEMENT: YES" in judgment["judgment"].upper()
agreement_class = "agreement" if is_agreement else "disagreement"
agreement_icon = "βœ…" if is_agreement else "❌"
judgment_content = f"## Round {round_num + 1} Judgment\n**Evaluation:** <div class='{agreement_class}'>{agreement_icon} {judgment['judgment']}</div>"
round_outputs[round_num * 2] = judgment_content
yield [
gr.update(value=initial_content, visible=True),
gr.update(value=round_outputs[0], visible=bool(round_outputs[0])),
gr.update(value=round_outputs[1], visible=bool(round_outputs[1])),
gr.update(value=round_outputs[2], visible=bool(round_outputs[2])),
gr.update(value=round_outputs[3], visible=bool(round_outputs[3])),
gr.update(value=round_outputs[4], visible=bool(round_outputs[4])),
gr.update(value=round_outputs[5], visible=bool(round_outputs[5])),
gr.update(value="", visible=False),
gr.update(value=f"### Status: πŸ” Round {round_num + 1} judgment complete", visible=True)
]
await asyncio.sleep(1)
if not judgment["reprompt_needed"]:
break
revised_solutions = await orchestrator.get_revised_solutions(problem, solutions, judgment["judgment"])
history.append({"solutions": revised_solutions})
revision_content = f"## Round {round_num + 1} Revised Solutions\n**Revised Solutions:**\n- **{revised_solutions[0]['model_name']}**: {revised_solutions[0]['solution']}\n- **{revised_solutions[1]['model_name']}**: {revised_solutions[1]['solution']}"
round_outputs[round_num * 2 + 1] = revision_content
yield [
gr.update(value=initial_content, visible=True),
gr.update(value=round_outputs[0], visible=bool(round_outputs[0])),
gr.update(value=round_outputs[1], visible=bool(round_outputs[1])),
gr.update(value=round_outputs[2], visible=bool(round_outputs[2])),
gr.update(value=round_outputs[3], visible=bool(round_outputs[3])),
gr.update(value=round_outputs[4], visible=bool(round_outputs[4])),
gr.update(value=round_outputs[5], visible=bool(round_outputs[5])),
gr.update(value="", visible=False),
gr.update(value=f"### Status: πŸ”„ Round {round_num + 1} revised solutions generated", visible=True)
]
await asyncio.sleep(1)
solutions = revised_solutions
final_report_content = orchestrator.generate_final_report(problem, history)
yield [
gr.update(value=initial_content, visible=True),
gr.update(value=round_outputs[0], visible=True),
gr.update(value=round_outputs[1], visible=bool(round_outputs[1])),
gr.update(value=round_outputs[2], visible=bool(round_outputs[2])),
gr.update(value=round_outputs[3], visible=bool(round_outputs[3])),
gr.update(value=round_outputs[4], visible=bool(round_outputs[4])),
gr.update(value=round_outputs[5], visible=bool(round_outputs[5])),
gr.update(value=final_report_content, visible=True),
gr.update(value=f"### Status: ✨ Process complete! Completed {round_num + 1} round(s)", visible=True)
]
with gr.Blocks(title="PolyThink Alpha", css=custom_css) as demo:
with gr.Column(elem_classes=["app-header"]):
gr.Markdown("<h1 class='app-title'>PolyThink Alpha</h1>", show_label=False)
gr.Markdown("<p class='app-subtitle'>Multi-Agent Problem Solving System</p>", show_label=False)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Problem Input")
problem_input = gr.Textbox(label="Problem", placeholder="e.g., What is 32 + 63?", lines=3)
rounds_slider = gr.Slider(2, 6, value=2, step=1, label="Maximum Rounds")
solve_button = gr.Button("Solve Problem", elem_classes=["primary-button"])
status_text = gr.Markdown("### Status: Ready", elem_classes=["status-bar"], visible=True)
with gr.Column():
initial_solutions = gr.Markdown(elem_classes=["step-section"], visible=False)
round_judgment_1 = gr.Markdown(elem_classes=["step-section"], visible=False)
revised_solutions_1 = gr.Markdown(elem_classes=["step-section"], visible=False)
round_judgment_2 = gr.Markdown(elem_classes=["step-section"], visible=False)
revised_solutions_2 = gr.Markdown(elem_classes=["step-section"], visible=False)
round_judgment_3 = gr.Markdown(elem_classes=["step-section"], visible=False)
revised_solutions_3 = gr.Markdown(elem_classes=["step-section"], visible=False)
final_report = gr.HTML(elem_classes=["final-report"], visible=False)
solve_button.click(
fn=solve_problem,
inputs=[
problem_input,
rounds_slider
],
outputs=[
initial_solutions,
round_judgment_1,
revised_solutions_1,
round_judgment_2,
revised_solutions_2,
round_judgment_3,
revised_solutions_3,
final_report,
status_text
]
)
return demo.queue()
if __name__ == "__main__":
demo = create_polythink_interface()
demo.launch(share=True)