Update app.py
Browse files
app.py
CHANGED
@@ -3,40 +3,22 @@ warnings.filterwarnings("ignore")
|
|
3 |
## import necessary packages
|
4 |
|
5 |
import os
|
6 |
-
import io
|
7 |
-
import sys
|
8 |
-
import base64
|
9 |
-
import random
|
10 |
-
import argparse
|
11 |
-
import math
|
12 |
-
import numpy as np
|
13 |
-
|
14 |
from typing import Any, Union,Dict, List
|
15 |
import numpy as np
|
|
|
|
|
16 |
import requests
|
|
|
|
|
17 |
from PIL import Image
|
18 |
-
from
|
19 |
-
from keras import backend as K
|
20 |
-
|
21 |
-
import coco
|
22 |
-
import utils
|
23 |
-
import model as modellib
|
24 |
-
import visualize
|
25 |
-
from classes import class_names
|
26 |
from fastapi import FastAPI
|
27 |
|
28 |
# Create a new FastAPI app instance
|
29 |
app = FastAPI()
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Directory to save logs and trained model
|
35 |
-
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
|
36 |
-
|
37 |
-
# Local path to trained weights file
|
38 |
-
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
|
39 |
-
os.system("pip install pycocotools==2.0.0")
|
40 |
|
41 |
|
42 |
|
@@ -45,42 +27,39 @@ os.system("pip install pycocotools==2.0.0")
|
|
45 |
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
|
46 |
# containing the generated text under the key "output"
|
47 |
@app.get("/generate")
|
48 |
-
def generate(
|
49 |
"""
|
50 |
Using the text summarization pipeline from `transformers`, summerize text
|
51 |
from the given input text. The model used is `philschmid/bart-large-cnn-samsum`, which
|
52 |
can be found [here](<https://huggingface.co/philschmid/bart-large-cnn-samsum>).
|
53 |
"""
|
54 |
# Use the pipeline to generate text from the given input text
|
55 |
-
K.clear_session()
|
56 |
-
|
57 |
-
if not os.path.exists(COCO_MODEL_PATH):
|
58 |
-
utils.download_trained_weights(COCO_MODEL_PATH)
|
59 |
-
|
60 |
-
class InferenceConfig(coco.CocoConfig):
|
61 |
-
GPU_COUNT = 1
|
62 |
-
IMAGES_PER_GPU = 1
|
63 |
-
config = InferenceConfig()
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
image = open_cv_image
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
image
|
|
|
81 |
im_file = io.BytesIO()
|
82 |
-
|
83 |
-
im_bytes = im_file.getvalue()
|
84 |
# Return the generated text in a JSON response
|
85 |
return {"output": im_bytes}
|
86 |
|
|
|
3 |
## import necessary packages
|
4 |
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from typing import Any, Union,Dict, List
|
7 |
import numpy as np
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
import requests
|
11 |
+
import tensorflow as tf
|
12 |
+
import tensorflow_hub as hub
|
13 |
from PIL import Image
|
14 |
+
from helper import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
from fastapi import FastAPI
|
16 |
|
17 |
# Create a new FastAPI app instance
|
18 |
app = FastAPI()
|
19 |
|
20 |
+
hub_handle = 'https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2'
|
21 |
+
hub_module = hub.load(hub_handle)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
|
|
|
27 |
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
|
28 |
# containing the generated text under the key "output"
|
29 |
@app.get("/generate")
|
30 |
+
def generate(features: Dict[str, str]):
|
31 |
"""
|
32 |
Using the text summarization pipeline from `transformers`, summerize text
|
33 |
from the given input text. The model used is `philschmid/bart-large-cnn-samsum`, which
|
34 |
can be found [here](<https://huggingface.co/philschmid/bart-large-cnn-samsum>).
|
35 |
"""
|
36 |
# Use the pipeline to generate text from the given input text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
content_image_url = features['url']
|
39 |
+
if 'style_url' not in features:
|
40 |
+
style_image_url = 'https://upload.wikimedia.org/wikipedia/commons/c/c5/Edvard_Munch%2C_1893%2C_The_Scream%2C_oil%2C_tempera_and_pastel_on_cardboard%2C_91_x_73_cm%2C_National_Gallery_of_Norway.jpg'
|
41 |
+
else:
|
42 |
+
style_image_url = features['style_url']
|
|
|
43 |
|
44 |
+
# Load images
|
45 |
+
content_img_size = (500, 500)
|
46 |
+
style_img_size = (300, 300)
|
47 |
|
48 |
+
style_image = load_image(style_image_url, style_img_size)
|
49 |
+
content_image = load_image(content_image_url, content_img_size)
|
50 |
+
style_image = tf.nn.avg_pool(
|
51 |
+
style_image, ksize=[3, 3], strides=[1, 1], padding='SAME')
|
52 |
|
53 |
+
# Stylize content image with given style image.
|
54 |
+
outputs = hub_module(tf.constant(content_image),
|
55 |
+
tf.constant(style_image))
|
56 |
+
stylized_image = outputs[0]
|
57 |
|
58 |
+
# get PIL image and convert to base64
|
59 |
+
img = Image.fromarray(np.uint8(stylized_image.numpy()[0] * 255))
|
60 |
im_file = io.BytesIO()
|
61 |
+
img.save(im_file, format="PNG")
|
62 |
+
im_bytes = base64.b64encode(im_file.getvalue()).decode("utf-8")
|
63 |
# Return the generated text in a JSON response
|
64 |
return {"output": im_bytes}
|
65 |
|