Spaces:
Sleeping
Sleeping
nick_93
commited on
Commit
·
bff5c84
1
Parent(s):
ac6bf8a
init
Browse files
app.py
CHANGED
@@ -126,7 +126,7 @@ def get_depth_image(
|
|
126 |
feature_extractor: AutoImageProcessor,
|
127 |
depth_estimator: AutoModelForDepthEstimation
|
128 |
) -> Image:
|
129 |
-
image_to_depth = feature_extractor(images=image, return_tensors="pt")
|
130 |
with torch.no_grad():
|
131 |
depth_map = depth_estimator(**image_to_depth).predicted_depth
|
132 |
|
@@ -180,7 +180,6 @@ class ControlNetDepthDesignModelMulti:
|
|
180 |
""" Produces random noise images """
|
181 |
def __init__(self):
|
182 |
""" Initialize your model(s) here """
|
183 |
-
device = torch.device("cuda")
|
184 |
#os.environ['HF_HUB_OFFLINE'] = "True"
|
185 |
controlnet_depth= ControlNetModel.from_pretrained(
|
186 |
"controlnet_depth", torch_dtype=dtype, use_safetensors=True)
|
@@ -199,9 +198,7 @@ class ControlNetDepthDesignModelMulti:
|
|
199 |
weight_name="ip-adapter_sd15.bin")
|
200 |
self.pipe.set_ip_adapter_scale(0.4)
|
201 |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
202 |
-
print(self.pipe.device)
|
203 |
self.pipe = self.pipe.to(device)
|
204 |
-
print(self.pipe.device)
|
205 |
self.guide_pipe = StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B",
|
206 |
torch_dtype=dtype, use_safetensors=True, variant="fp16")
|
207 |
self.guide_pipe = self.guide_pipe.to(device)
|
@@ -215,16 +212,6 @@ class ControlNetDepthDesignModelMulti:
|
|
215 |
self.depth_feature_extractor, self.depth_estimator = get_depth_pipeline()
|
216 |
self.depth_estimator = self.depth_estimator.to(device)
|
217 |
|
218 |
-
if torch.cuda.is_available():
|
219 |
-
# Print the number of available GPUs
|
220 |
-
print("Available GPU devices:")
|
221 |
-
for i in range(torch.cuda.device_count()):
|
222 |
-
print(f"Device {i}: {torch.cuda.get_device_name(i)}")
|
223 |
-
else:
|
224 |
-
print("No GPU devices available. Using CPU.")
|
225 |
-
|
226 |
-
print(self.depth_estimator.device)
|
227 |
-
print(self.pipe.device)
|
228 |
|
229 |
@spaces.GPU
|
230 |
def generate_design(self, empty_room_image: Image, prompt: str, guidance_scale: int = 10, num_steps: int = 50, strength: float =0.9, img_size: int = 640) -> Image:
|
|
|
126 |
feature_extractor: AutoImageProcessor,
|
127 |
depth_estimator: AutoModelForDepthEstimation
|
128 |
) -> Image:
|
129 |
+
image_to_depth = feature_extractor(images=image, return_tensors="pt")#.to(device)
|
130 |
with torch.no_grad():
|
131 |
depth_map = depth_estimator(**image_to_depth).predicted_depth
|
132 |
|
|
|
180 |
""" Produces random noise images """
|
181 |
def __init__(self):
|
182 |
""" Initialize your model(s) here """
|
|
|
183 |
#os.environ['HF_HUB_OFFLINE'] = "True"
|
184 |
controlnet_depth= ControlNetModel.from_pretrained(
|
185 |
"controlnet_depth", torch_dtype=dtype, use_safetensors=True)
|
|
|
198 |
weight_name="ip-adapter_sd15.bin")
|
199 |
self.pipe.set_ip_adapter_scale(0.4)
|
200 |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
|
|
201 |
self.pipe = self.pipe.to(device)
|
|
|
202 |
self.guide_pipe = StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B",
|
203 |
torch_dtype=dtype, use_safetensors=True, variant="fp16")
|
204 |
self.guide_pipe = self.guide_pipe.to(device)
|
|
|
212 |
self.depth_feature_extractor, self.depth_estimator = get_depth_pipeline()
|
213 |
self.depth_estimator = self.depth_estimator.to(device)
|
214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
@spaces.GPU
|
217 |
def generate_design(self, empty_room_image: Image, prompt: str, guidance_scale: int = 10, num_steps: int = 50, strength: float =0.9, img_size: int = 640) -> Image:
|