File size: 15,755 Bytes
55ac26c
3df51c9
 
 
 
 
7b17cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28da247
55ac26c
19217bc
28da247
1f83236
28da247
 
0b8aaf7
9c84c70
55ac26c
 
bddb8a1
55ac26c
 
0b8aaf7
55ac26c
 
0b8aaf7
55ac26c
 
 
 
0b8aaf7
 
 
 
28da247
55ac26c
 
0b8aaf7
55ac26c
a806278
19217bc
 
 
a806278
 
19217bc
55ac26c
 
 
9c84c70
 
864aa62
55ac26c
 
 
 
 
 
9c84c70
 
ec38b07
e003b4c
fa15189
46294a9
 
55ac26c
0b8aaf7
 
 
 
 
 
 
 
 
 
bf7338c
0b8aaf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa15189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213db45
 
 
 
 
 
 
 
 
 
 
 
 
fa15189
 
 
 
 
 
 
213db45
 
 
 
 
fa15189
 
 
 
 
 
 
 
213db45
fa15189
213db45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa15189
 
213db45
 
 
 
 
 
 
fa15189
213db45
 
 
 
0b8aaf7
 
 
 
bf7338c
 
55ac26c
 
 
 
 
28da247
0b8aaf7
55ac26c
 
0b8aaf7
4423b71
55ac26c
 
bf7338c
3df51c9
 
0b8aaf7
55ac26c
 
28da247
9c84c70
 
28da247
9c84c70
 
 
2d7c3b2
fa15189
 
28da247
55ac26c
 
0b8aaf7
7b17cbd
0b8aaf7
55ac26c
 
fa15189
 
55ac26c
0b8aaf7
55ac26c
 
 
 
0b8aaf7
4bcd3c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
# Set cache directories to writable locations right at the beginning
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"

# Patching the schema handling problem in Gradio 5.x
# This needs to be done before any Gradio imports
import sys
def patch_gradio_utils():
    try:
        from gradio_client import utils
        original_get_type = utils.get_type
        
        def patched_get_type(schema):
            if isinstance(schema, bool):
                return "boolean"
            if not isinstance(schema, dict):
                return "any"
            return original_get_type(schema)
        
        utils.get_type = patched_get_type
        print("Successfully patched Gradio utils.get_type")
    except Exception as e:
        print(f"Could not patch Gradio utils: {e}")

patch_gradio_utils()

import gc
import torch
import cv2
import gradio as gr
print("📦 Gradio version:", gr.__version__)
import numpy as np
import matplotlib.cm as cm
import matplotlib  # New import for the updated colormap API
import subprocess

from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video
from huggingface_hub import hf_hub_download

# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

# Model configuration for different encoder variants.
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
    'vits': 'Small',
    'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]

# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])

filepath = hf_hub_download(
    repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
    filename=f"video_depth_anything_{encoder}.pth",
    repo_type="model",
    cache_dir="/tmp/huggingface"  # Explizites Setzen des Cache-Verzeichnisses
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()

title = "# Video Depth Anything + RGBD sbs output"
description = """Official demo for **Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""

def infer_video_depth(
    input_video: str,
    max_len: int = -1,
    target_fps: int = -1,
    max_res: int = 1280,
    stitch: bool = True,
    grayscale: bool = True,
    convert_from_color: bool = True,
    blur: float = 0.3,
    loop_factor: int = 1,  # Neuer Parameter
    output_dir: str = './outputs',
    input_size: int = 518,
):
    # 1. Read input video frames for inference (downscaled to max_res).
    frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
    # 2. Perform depth inference using the model.
    depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)

    video_name = os.path.basename(input_video)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Save the preprocessed (RGB) video and the generated depth visualization.
    # Still process the video, but we won't display it in the UI
    processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
    depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
    save_video(frames, processed_video_path, fps=fps)
    save_video(depths, depth_vis_path, fps=fps, is_depths=True)

    stitched_video_path = None
    if stitch:
        # For stitching: read the original video in full resolution (without downscaling).
        full_frames, _ = read_video_frames(input_video, max_len, target_fps, max_res=-1)
        # For each frame, create a visual depth image from the inferenced depths.
        d_min, d_max = depths.min(), depths.max()
        stitched_frames = []
        for i in range(min(len(full_frames), len(depths))):
            rgb_full = full_frames[i]  # Full-resolution RGB frame.
            depth_frame = depths[i]
            # Normalize the depth frame to the range [0, 255].
            depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
            # Generate depth visualization:
            if grayscale:
                if convert_from_color:
                    # First, generate a color depth image using the inferno colormap,
                    # then convert that color image to grayscale.
                    cmap = matplotlib.colormaps.get_cmap("inferno")
                    depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
                    depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
                    depth_vis = np.stack([depth_gray] * 3, axis=-1)
                else:
                    # Directly generate a grayscale image from the normalized depth values.
                    depth_vis = np.stack([depth_norm] * 3, axis=-1)
            else:
                # Generate a color depth image using the inferno colormap.
                cmap = matplotlib.colormaps.get_cmap("inferno")
                depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
            # Apply Gaussian blur if requested.
            if blur > 0:
                kernel_size = int(blur * 20) * 2 + 1  # Ensures an odd kernel size.
                depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
            # Resize the depth visualization to match the full-resolution RGB frame.
            H_full, W_full = rgb_full.shape[:2]
            depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
            # Concatenate the full-resolution RGB frame (left) and the resized depth visualization (right).
            stitched = cv2.hconcat([rgb_full, depth_vis_resized])
            stitched_frames.append(stitched)
        stitched_frames = np.array(stitched_frames)
        # Use only the first 20 characters of the base name for the output filename and append '_RGBD.mp4'
        base_name = os.path.splitext(video_name)[0]
        short_name = base_name[:20]
        stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
        save_video(stitched_frames, stitched_video_path, fps=fps)
        
        # Merge audio from the input video into the stitched video using ffmpeg.
        temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
        cmd = [
            "ffmpeg",
            "-y",
            "-i", stitched_video_path,
            "-i", input_video,
            "-c:v", "copy",
            "-c:a", "aac",
            "-map", "0:v:0",
            "-map", "1:a:0?",
            "-shortest",
            temp_audio_path
        ]
        subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        os.replace(temp_audio_path, stitched_video_path)
    
    # Nachdem die Videos erstellt wurden, wenden wir den Loop-Faktor an
    if loop_factor > 1:
        depth_looped_path = os.path.join(output_dir, os.path.splitext(os.path.basename(depth_vis_path))[0] + f'_loop{loop_factor}.mp4')
        
        # Erstelle eine temporäre Textdatei mit der Liste der zu wiederholenden Dateien
        concat_file_path = os.path.join(output_dir, 'concat_list.txt')
        with open(concat_file_path, 'w') as f:
            for _ in range(loop_factor):
                f.write(f"file '{depth_vis_path}'\n")
        
        # Verwende ffmpeg, um das Video zu wiederholen ohne Neucodierung
        cmd = [
            "ffmpeg",
            "-y",
            "-f", "concat",
            "-safe", "0",
            "-i", concat_file_path,
            "-c", "copy",
            depth_looped_path
        ]
        subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        
        # Ersetze den ursprünglichen Pfad durch den neuen geloopten Pfad
        depth_vis_path = depth_looped_path
        
        if stitch and stitched_video_path:
            # Speichern wir den Originalnamen
            original_path = stitched_video_path
            
            # Überprüfen wir, ob das Input-Video einen Audio-Stream hat
            has_audio = False
            check_audio_cmd = [
                "ffmpeg",
                "-i", input_video,
                "-c", "copy",
                "-f", "null",
                "-"
            ]
            result = subprocess.run(check_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
            stderr = result.stderr.decode('utf-8')
            if "Audio" in stderr:
                has_audio = True
            
            # Erstelle eine temporäre Textdatei für die stitched Videos
            concat_stitched_file_path = os.path.join(output_dir, 'concat_stitched_list.txt')
            with open(concat_stitched_file_path, 'w') as f:
                for _ in range(loop_factor):
                    f.write(f"file '{original_path}'\n")
            
            # Temporärer Pfad für das geloopte Video ohne Audio
            temp_looped_path = os.path.join(output_dir, 'temp_looped_rgbd.mp4')
            
            # Verwende ffmpeg, um das Video zu loopen
            concat_cmd = [
                "ffmpeg",
                "-y",
                "-f", "concat",
                "-safe", "0",
                "-i", concat_stitched_file_path,
                "-c", "copy",
                temp_looped_path
            ]
            subprocess.run(concat_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
            
            # Wenn Audio vorhanden ist, müssen wir es separat behandeln
            if has_audio:
                # Extrahiere den Audio-Track aus dem originalen Input-Video
                # Dies ist die sauberste Quelle
                audio_path = os.path.join(output_dir, 'extracted_audio.aac')
                extract_audio_cmd = [
                    "ffmpeg",
                    "-y",
                    "-i", input_video,  # Original Input-Video verwenden
                    "-vn", "-acodec", "copy",
                    audio_path
                ]
                subprocess.run(extract_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
                
                # Erstelle eine Textdatei für das Audio-Looping
                concat_audio_file_path = os.path.join(output_dir, 'concat_audio_list.txt')
                with open(concat_audio_file_path, 'w') as f:
                    for _ in range(loop_factor):
                        f.write(f"file '{audio_path}'\n")
                
                # Erstelle den geloopten Audio-Track
                looped_audio_path = os.path.join(output_dir, 'looped_audio.aac')
                audio_loop_cmd = [
                    "ffmpeg",
                    "-y",
                    "-f", "concat",
                    "-safe", "0",
                    "-i", concat_audio_file_path,
                    "-c", "copy",
                    looped_audio_path
                ]
                subprocess.run(audio_loop_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
                
                # Kombiniere das geloopte Video mit dem geloopten Audio
                final_cmd = [
                    "ffmpeg",
                    "-y",
                    "-i", temp_looped_path,
                    "-i", looped_audio_path,
                    "-c:v", "copy",
                    "-c:a", "aac",
                    "-map", "0:v:0",
                    "-map", "1:a:0",
                    "-shortest",
                    original_path  # Verwenden des originalen Pfads als Ziel
                ]
                subprocess.run(final_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
            else:
                # Wenn kein Audio vorhanden ist, einfach das Video umbenennen
                os.replace(temp_looped_path, original_path)
            
            # Bereinige temporäre Dateien
            temp_files = [concat_file_path, concat_stitched_file_path]
            if has_audio:
                temp_files.extend([concat_audio_file_path, audio_path, looped_audio_path])
            if os.path.exists(temp_looped_path):
                temp_files.append(temp_looped_path)
                
            for file_path in temp_files:
                if os.path.exists(file_path):
                    try:
                        os.remove(file_path)
                    except:
                        pass

    gc.collect()
    torch.cuda.empty_cache()

    # Only return the depth visualization and stitched video (not the preprocessed video)
    return [depth_vis_path, stitched_video_path]

def construct_demo():
    with gr.Blocks(analytics_enabled=False) as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                # Video input component for file upload.
                input_video = gr.Video(label="Input Video")
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    # Removed the processed_video component from the UI
                    depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, show_share_button=True, scale=5)
                    stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, show_share_button=True, scale=5)
                    
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Accordion("Advanced Settings", open=False):
                    max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
                    target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
                    max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
                    stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
                    grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
                    convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
                    blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
                    # Füge den Loop-Faktor Slider hinzu
                    loop_factor = gr.Slider(label="Loop Factor (repeats the output video)", minimum=1, maximum=20, value=1, step=1)
                generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass
        
        # Removed Examples block to improve loading time
        
        generate_btn.click(
            fn=infer_video_depth,
            inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider, loop_factor],  # loop_factor hinzugefügt
            outputs=[depth_vis_video, stitched_video],
        )
    
    return demo

if __name__ == "__main__":
    demo = construct_demo()
    demo.queue()  # Enable asynchronous processing.
    demo.launch(share=True, show_api=False)