Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
IMAGE_SIZE = 256
|
6 |
+
|
7 |
+
# Load the saved model
|
8 |
+
model = tf.keras.models.load_model('/content/drive/MyDrive/Diabetic /RestNet_model/my_model.h5')
|
9 |
+
|
10 |
+
# Define class labels (adjust this according to your specific classes)
|
11 |
+
class_labels = ['Mild', 'Moderate', 'No_DR', 'Proliferate_DR', 'Severe']
|
12 |
+
|
13 |
+
def predict(image):
|
14 |
+
# Preprocess the image to the required size and scale
|
15 |
+
image = tf.image.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
|
16 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
17 |
+
|
18 |
+
# Make prediction
|
19 |
+
predictions = model.predict(image)
|
20 |
+
confidence = np.max(predictions)
|
21 |
+
predicted_class = class_labels[np.argmax(predictions)]
|
22 |
+
|
23 |
+
return predicted_class, float(confidence)
|
24 |
+
|
25 |
+
# Create the Gradio interface
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=gr.Image(type="pil"),
|
29 |
+
outputs=[gr.Label(num_top_classes=1), gr.Number(label="Confidence")],
|
30 |
+
title="Early Diabetic Retinopathy Detection",
|
31 |
+
description="Upload an image and get the predicted class along with confidence score."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the interface
|
35 |
+
interface.launch()
|