File size: 2,639 Bytes
8053227
f4ff201
54ad393
 
3fec1fb
f4ff201
8053227
1291143
 
c8d71a7
b960b9c
f4f6fd9
c8d71a7
58927e7
c8d71a7
 
58927e7
c8d71a7
 
 
 
 
 
 
 
 
 
54ad393
f4ff201
3fec1fb
 
70e3d12
3fec1fb
 
 
 
70e3d12
3fec1fb
 
 
70e3d12
548031b
 
 
 
 
1291143
b85fd37
 
1291143
548031b
3fec1fb
 
 
 
0a14984
3fec1fb
5305898
70e3d12
54ad393
548031b
70e3d12
548031b
b85fd37
3fec1fb
548031b
b00a80c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
import torch
#from controlnet_aux import OpenposeDetector
#from diffusers.utils import load_image
import gradio as gr


model_base = "stabilityai/stable-diffusion-xl-base-1.0"

#model_url = "https://huggingface.co/Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors"
model_url = "https://huggingface.co/Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors"

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

#pipe = StableDiffusionXLPipeline.from_pretrained(
#    model_base, vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
#)

pipe = StableDiffusionXLPipeline.from_single_file(
    model_url,
    torch_dtype = torch.float16,
    variant = "fp16",
    vae = vae,
    use_safetensors = True,
    scheduler_type = "ddim",
    use_auth_token="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"
)
pipe = pipe.to("cuda")

css = """
.btn-green {
  background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
  border-color: #22c55e !important;
  color: #166534 !important;
}
.btn-green:hover {
  background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""

def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)):
    images = pipe(
        prompt,
        negative_prompt=neg_prompt,
        num_inference_steps=samp_steps,
        guidance_scale=guide_scale,
        #cross_attention_kwargs={"scale": lora_scale},
        num_images_per_prompt=lora_scale,
        width=600,
        #generator=torch.manual_seed(97),
    ).images
    return [(img, f"Image {i+1}") for i, img in enumerate(images)]
        

with gr.Blocks(css=css) as demo:
    with gr.Column():
        prompt = gr.Textbox(label="Prompt")
        negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render")
        submit_btn = gr.Button("Generate", elem_classes="btn-green")
        gallery = gr.Gallery(label="Generated images", height=1100)
        with gr.Row():
            samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps")
            guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale")
            lora_scale = gr.Slider(1, 6, value=1, step=1, label="LoRA power")

    submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True)

demo.queue(1)
demo.launch(debug=True)