File size: 3,584 Bytes
392b88f
f4ff201
7e9a760
54ad393
 
3fec1fb
0428186
f4ff201
8053227
b3471e3
1291143
c8d71a7
b3471e3
 
ae9efe4
c8d71a7
459e60d
58927e7
c8d71a7
 
58927e7
c8d71a7
ae9efe4
3fec1fb
 
70e3d12
3fec1fb
 
 
 
70e3d12
3fec1fb
 
 
2839abc
7e9a760
 
548031b
 
 
 
 
1291143
dba1359
ea3b1d6
 
7e9a760
ae9efe4
45bbd2a
3fec1fb
08c17b3
ca74145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fec1fb
 
0a14984
3fec1fb
f1ebf81
70e3d12
548031b
f1ebf81
 
7e9a760
2839abc
 
ae9efe4
 
7e9a760
3fec1fb
2839abc
b00a80c
ca74145
b00a80c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
import torch
import random
#from controlnet_aux import OpenposeDetector
#from diffusers.utils import load_image
import gradio as gr
import gc


#model_base = "stabilityai/stable-diffusion-xl-base-1.0"

#model_url = "https://huggingface.co/Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors"
model_url = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors"
#model_url = "https://huggingface.co/Krebzonide/Sevenof9_v3_sdxl/blob/main/nsfwSevenof9V3_nsfwSevenof9V3.safetensors"

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = None

#pipe = StableDiffusionXLPipeline.from_pretrained(
#    model_base, vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
#)


css = """
.btn-green {
  background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
  border-color: #22c55e !important;
  color: #166534 !important;
}
.btn-green:hover {
  background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""

def generate(prompt, neg_prompt, samp_steps, guide_scale, batch_size, seed, height, width, progress=gr.Progress(track_tqdm=True)):
    if seed < 0:
        seed = random.randint(1,999999)
    images = pipe(
        prompt,
        negative_prompt=neg_prompt,
        num_inference_steps=samp_steps,
        guidance_scale=guide_scale,
        #cross_attention_kwargs={"scale": lora_scale},
        num_images_per_prompt=batch_size,
        height=height,
        width=width,
        generator=torch.manual_seed(seed),
    ).images
    return [(img, f"Image {i+1}") for i, img in enumerate(images)]
        
def set_base_model(base_model_id):
    global pipe
    del pipe
    torch.cuda.empty_cache()
    gc.collect()
    pipe = StableDiffusionXLPipeline.from_single_file(
        model_url,
        torch_dtype = torch.float16,
        variant = "fp16",
        vae = vae,
        use_safetensors = True,
        use_auth_token="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"
    )
    #pipe = load_model(base_model_id)
    pipe.to("cuda")
    return pipe

def load_model(base_model_id):
     pipe = StableDiffusionXLPipeline.from_single_file(
        model_url,
        torch_dtype = torch.float16,
        variant = "fp16",
        vae = vae,
        use_safetensors = True,
        use_auth_token="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"
    )
    

with gr.Blocks(css=css) as demo:
    with gr.Column():
        prompt = gr.Textbox(label="Prompt")
        negative_prompt = gr.Textbox(label="Negative Prompt")
        submit_btn = gr.Button("Generate", elem_classes="btn-green")
        with gr.Row():
            samp_steps = gr.Slider(1, 50, value=20, step=1, label="Sampling steps")
            guide_scale = gr.Slider(1, 6, value=3, step=0.5, label="Guidance scale")
            batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size")
        with gr.Row():
            seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=999999, step=1)
            height = gr.Slider(label="Height", value=1024, minimum=512, maximum=2048, step=16)
            width = gr.Slider(label="Width", value=1024, minimum=512, maximum=2048, step=16)
        gallery = gr.Gallery(label="Generated images", height=800)

    submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, batch_size, seed, height, width], [gallery], queue=True)

pipe = set_base_model(model_url)
demo.queue(1)
demo.launch(debug=True)