import datetime import gradio as gr import pandas as pd import yfinance as yf import seaborn as sns sns.set() import matplotlib.pyplot as plt import plotly.graph_objects as go from datetime import date, timedelta from matplotlib import pyplot as plt from plotly.subplots import make_subplots from pytickersymbols import PyTickerSymbols from statsmodels.tsa.arima.model import ARIMA from pandas.plotting import autocorrelation_plot from dateutil.relativedelta import relativedelta index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)'] ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'} time_intervals = ['1d', '1m', '5m', '15m', '60m'] global START_DATE, END_DATE END_DATE = date.today() START_DATE = END_DATE - relativedelta(years=1) FORECAST_PERIOD = 7 demo = gr.Blocks() stock_names = [] with demo: d1 = gr.Dropdown(index_options, label='Please select Index...', info='Will be adding more indices later on', interactive=True) d2 = gr.Dropdown([], label='Please Select Stock from your selected index', interactive=True) d3 = gr.Dropdown(time_intervals, label='Select Time Interval', value='1d', interactive=True) d4 = gr.Radio(['Line Graph', 'Candlestick Graph'], label='Select Graph Type', value='Line Graph', interactive=True) d5 = gr.Dropdown(['ARIMA', 'Prophet', 'LSTM'], label='Select Forecasting Method', value='ARIMA', interactive=True) def forecast_series(series, model="ARIMA", forecast_period=7): predictions = list() if series.shape[1] > 1: series = series['Close'].values.tolist() if model == "ARIMA": for i in range(forecast_period): model = ARIMA(series, order=(5, 1, 0)) model_fit = model.fit() output = model_fit.forecast() yhat = output[0] predictions.append(yhat) series.append(yhat) elif model == "Prophet": # Implement Prophet forecasting method pass elif model == "LSTM": # Implement LSTM forecasting method pass return predictions def is_business_day(a_date): return a_date.weekday() < 5 def get_stocks_from_index(idx): stock_data = PyTickerSymbols() index = ticker_dict[idx] stocks = list(stock_data.get_stocks_by_index(index)) stock_names = [f"{stock['name']}:{stock['symbol']}" for stock in stocks] return gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True) d1.input(get_stocks_from_index, d1, d2) def get_stock_graph(idx, stock, interval, graph_type, forecast_method): stock_name, ticker_name = stock.split(":") if ticker_dict[idx] == 'FTSE 100': ticker_name += '.L' if ticker_name[-1] != '.' else 'L' elif ticker_dict[idx] == 'CAC 40': ticker_name += '.PA' series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval) series = series.reset_index() predictions = forecast_series(series, model=forecast_method) last_date = pd.to_datetime(series['Date'].values[-1]) forecast_week = [last_date + timedelta(days=i) for i in range(1, FORECAST_PERIOD + 1) if is_business_day(last_date + timedelta(days=i))] forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions}) if graph_type == 'Line Graph': fig = go.Figure() fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical')) fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast')) else: # Candlestick Graph fig = go.Figure(data=[go.Candlestick(x=series['Date'], open=series['Open'], high=series['High'], low=series['Low'], close=series['Close'], name='Historical')]) fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast')) fig.update_layout(title=f"Stock Price of {stock_name}", xaxis_title="Date", yaxis_title="Price") return fig out = gr.Plot() inputs = [d1, d2, d3, d4, d5] d2.input(get_stock_graph, inputs, out) d3.input(get_stock_graph, inputs, out) d4.input(get_stock_graph, inputs, out) d5.input(get_stock_graph, inputs, out) demo.launch()