Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,7 @@ import datetime
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import yfinance as yf
|
5 |
-
import seaborn as sns
|
6 |
-
|
7 |
sns.set()
|
8 |
import matplotlib.pyplot as plt
|
9 |
import plotly.graph_objects as go
|
@@ -18,6 +17,7 @@ from dateutil.relativedelta import relativedelta
|
|
18 |
|
19 |
index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
|
20 |
ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
|
|
|
21 |
|
22 |
global START_DATE, END_DATE
|
23 |
|
@@ -28,23 +28,18 @@ demo = gr.Blocks()
|
|
28 |
stock_names = []
|
29 |
|
30 |
with demo:
|
31 |
-
d1 = gr.Dropdown(index_options, label='Please select Index...',
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# d3 = gr.Dropdown(['General News'])
|
39 |
|
40 |
def forecast_series(series, model="ARIMA", forecast_period=7):
|
41 |
-
|
42 |
predictions = list()
|
43 |
if series.shape[1] > 1:
|
44 |
series = series['Close'].values.tolist()
|
45 |
-
|
46 |
if model == "ARIMA":
|
47 |
-
## Do grid search here --> Custom for all stocks
|
48 |
for i in range(forecast_period):
|
49 |
model = ARIMA(series, order=(5, 1, 0))
|
50 |
model_fit = model.fit()
|
@@ -52,74 +47,69 @@ with demo:
|
|
52 |
yhat = output[0]
|
53 |
predictions.append(yhat)
|
54 |
series.append(yhat)
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
return predictions
|
57 |
|
58 |
-
|
59 |
def is_business_day(a_date):
|
60 |
return a_date.weekday() < 5
|
61 |
|
62 |
-
|
63 |
def get_stocks_from_index(idx):
|
64 |
stock_data = PyTickerSymbols()
|
65 |
-
# indices = stock_data.get_all_indices()
|
66 |
index = ticker_dict[idx]
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# 'name', 'symbol', 'country', 'indices', 'industries', 'symbols', 'metadata', 'isins', 'akas'
|
71 |
-
stocks = list(stock_data.get_stocks_by_index(index)) ##converting filter object to list
|
72 |
-
stock_names = []
|
73 |
-
for stock in stocks:
|
74 |
-
stock_names.append(stock['name'] + ':' + stock['symbol'])
|
75 |
-
d2 = gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
|
76 |
-
return d2
|
77 |
-
|
78 |
|
79 |
d1.input(get_stocks_from_index, d1, d2)
|
80 |
-
out = gr.Plot(every=10)
|
81 |
-
|
82 |
-
|
83 |
-
def get_stock_graph(idx, stock):
|
84 |
-
|
85 |
-
stock_name = stock.split(":")[0]
|
86 |
-
ticker_name = stock.split(":")[1]
|
87 |
|
|
|
|
|
|
|
88 |
if ticker_dict[idx] == 'FTSE 100':
|
89 |
-
if ticker_name[-1]
|
90 |
-
ticker_name += 'L'
|
91 |
-
else:
|
92 |
-
ticker_name += '.L'
|
93 |
elif ticker_dict[idx] == 'CAC 40':
|
94 |
ticker_name += '.PA'
|
95 |
|
96 |
-
|
97 |
-
# data = yf.download(tickers="MSFT", period="5d", interval="1m")
|
98 |
-
series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE) # stock.split(":")[1]
|
99 |
series = series.reset_index()
|
100 |
|
101 |
-
predictions = forecast_series(series)
|
102 |
|
103 |
last_date = pd.to_datetime(series['Date'].values[-1])
|
104 |
-
forecast_week = []
|
105 |
-
|
106 |
-
while len(forecast_week) != FORECAST_PERIOD:
|
107 |
-
if is_business_day(last_date):
|
108 |
-
forecast_week.append(last_date)
|
109 |
-
last_date += timedelta(days=1)
|
110 |
|
111 |
forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
plt.title("Stock Price of {}".format(stock_name), size='x-large', color='blue') # stock.split(":")[0]
|
120 |
-
text = "Your stock is:" + str(stock)
|
121 |
return fig
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
d2.input(get_stock_graph, [d1, d2], out)
|
125 |
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import yfinance as yf
|
5 |
+
import seaborn as sns
|
|
|
6 |
sns.set()
|
7 |
import matplotlib.pyplot as plt
|
8 |
import plotly.graph_objects as go
|
|
|
17 |
|
18 |
index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
|
19 |
ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
|
20 |
+
time_intervals = ['1d', '1m', '5m', '15m', '60m']
|
21 |
|
22 |
global START_DATE, END_DATE
|
23 |
|
|
|
28 |
stock_names = []
|
29 |
|
30 |
with demo:
|
31 |
+
d1 = gr.Dropdown(index_options, label='Please select Index...', info='Will be adding more indices later on', interactive=True)
|
32 |
+
d2 = gr.Dropdown([], label='Please Select Stock from your selected index', interactive=True)
|
33 |
+
d3 = gr.Dropdown(time_intervals, label='Select Time Interval', value='1d', interactive=True)
|
34 |
+
d4 = gr.Radio(['Line Graph', 'Candlestick Graph'], label='Select Graph Type', value='Line Graph', interactive=True)
|
35 |
+
d5 = gr.Dropdown(['ARIMA', 'Prophet', 'LSTM'], label='Select Forecasting Method', value='ARIMA', interactive=True)
|
|
|
|
|
|
|
36 |
|
37 |
def forecast_series(series, model="ARIMA", forecast_period=7):
|
|
|
38 |
predictions = list()
|
39 |
if series.shape[1] > 1:
|
40 |
series = series['Close'].values.tolist()
|
41 |
+
|
42 |
if model == "ARIMA":
|
|
|
43 |
for i in range(forecast_period):
|
44 |
model = ARIMA(series, order=(5, 1, 0))
|
45 |
model_fit = model.fit()
|
|
|
47 |
yhat = output[0]
|
48 |
predictions.append(yhat)
|
49 |
series.append(yhat)
|
50 |
+
elif model == "Prophet":
|
51 |
+
# Implement Prophet forecasting method
|
52 |
+
pass
|
53 |
+
elif model == "LSTM":
|
54 |
+
# Implement LSTM forecasting method
|
55 |
+
pass
|
56 |
|
57 |
return predictions
|
58 |
|
|
|
59 |
def is_business_day(a_date):
|
60 |
return a_date.weekday() < 5
|
61 |
|
|
|
62 |
def get_stocks_from_index(idx):
|
63 |
stock_data = PyTickerSymbols()
|
|
|
64 |
index = ticker_dict[idx]
|
65 |
+
stocks = list(stock_data.get_stocks_by_index(index))
|
66 |
+
stock_names = [f"{stock['name']}:{stock['symbol']}" for stock in stocks]
|
67 |
+
return gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
d1.input(get_stocks_from_index, d1, d2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
def get_stock_graph(idx, stock, interval, graph_type, forecast_method):
|
72 |
+
stock_name, ticker_name = stock.split(":")
|
73 |
+
|
74 |
if ticker_dict[idx] == 'FTSE 100':
|
75 |
+
ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
|
|
|
|
|
|
|
76 |
elif ticker_dict[idx] == 'CAC 40':
|
77 |
ticker_name += '.PA'
|
78 |
|
79 |
+
series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval)
|
|
|
|
|
80 |
series = series.reset_index()
|
81 |
|
82 |
+
predictions = forecast_series(series, model=forecast_method)
|
83 |
|
84 |
last_date = pd.to_datetime(series['Date'].values[-1])
|
85 |
+
forecast_week = [last_date + timedelta(days=i) for i in range(1, FORECAST_PERIOD + 1) if is_business_day(last_date + timedelta(days=i))]
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
|
88 |
|
89 |
+
if graph_type == 'Line Graph':
|
90 |
+
fig = go.Figure()
|
91 |
+
fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
|
92 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
93 |
+
else: # Candlestick Graph
|
94 |
+
fig = go.Figure(data=[go.Candlestick(x=series['Date'],
|
95 |
+
open=series['Open'],
|
96 |
+
high=series['High'],
|
97 |
+
low=series['Low'],
|
98 |
+
close=series['Close'],
|
99 |
+
name='Historical')])
|
100 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
101 |
+
|
102 |
+
fig.update_layout(title=f"Stock Price of {stock_name}",
|
103 |
+
xaxis_title="Date",
|
104 |
+
yaxis_title="Price")
|
105 |
|
|
|
|
|
106 |
return fig
|
107 |
|
108 |
+
out = gr.Plot()
|
109 |
+
inputs = [d1, d2, d3, d4, d5]
|
110 |
+
d2.input(get_stock_graph, inputs, out)
|
111 |
+
d3.input(get_stock_graph, inputs, out)
|
112 |
+
d4.input(get_stock_graph, inputs, out)
|
113 |
+
d5.input(get_stock_graph, inputs, out)
|
114 |
|
|
|
115 |
demo.launch()
|