Spaces:
Sleeping
Sleeping
Create stock_analysis.py
Browse files- stock_analysis.py +77 -0
stock_analysis.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import plotly.graph_objects as go
|
| 3 |
+
from datetime import timedelta
|
| 4 |
+
from statsmodels.tsa.arima.model import ARIMA
|
| 5 |
+
from config import FORECAST_PERIOD, ticker_dict
|
| 6 |
+
from data_fetcher import get_stock_data, get_company_info
|
| 7 |
+
|
| 8 |
+
def is_business_day(a_date):
|
| 9 |
+
return a_date.weekday() < 5
|
| 10 |
+
|
| 11 |
+
def forecast_series(series, model="ARIMA", forecast_period=FORECAST_PERIOD):
|
| 12 |
+
predictions = list()
|
| 13 |
+
if series.shape[1] > 1:
|
| 14 |
+
series = series['Close'].values.tolist()
|
| 15 |
+
|
| 16 |
+
if model == "ARIMA":
|
| 17 |
+
for _ in range(forecast_period):
|
| 18 |
+
model = ARIMA(series, order=(5, 1, 0))
|
| 19 |
+
model_fit = model.fit()
|
| 20 |
+
output = model_fit.forecast()
|
| 21 |
+
yhat = output[0]
|
| 22 |
+
predictions.append(yhat)
|
| 23 |
+
series.append(yhat)
|
| 24 |
+
elif model == "Prophet":
|
| 25 |
+
# Implement Prophet forecasting method
|
| 26 |
+
pass
|
| 27 |
+
elif model == "LSTM":
|
| 28 |
+
# Implement LSTM forecasting method
|
| 29 |
+
pass
|
| 30 |
+
|
| 31 |
+
return predictions
|
| 32 |
+
|
| 33 |
+
def get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method):
|
| 34 |
+
stock_name, ticker_name = stock.split(":")
|
| 35 |
+
|
| 36 |
+
if ticker_dict[idx] == 'FTSE 100':
|
| 37 |
+
ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
|
| 38 |
+
elif ticker_dict[idx] == 'CAC 40':
|
| 39 |
+
ticker_name += '.PA'
|
| 40 |
+
|
| 41 |
+
series = get_stock_data(ticker_name, interval)
|
| 42 |
+
predictions = forecast_series(series, model=forecast_method)
|
| 43 |
+
|
| 44 |
+
last_date = pd.to_datetime(series['Date'].values[-1])
|
| 45 |
+
forecast_week = []
|
| 46 |
+
i = 1
|
| 47 |
+
while len(forecast_week) < FORECAST_PERIOD:
|
| 48 |
+
next_date = last_date + timedelta(days=i)
|
| 49 |
+
if is_business_day(next_date):
|
| 50 |
+
forecast_week.append(next_date)
|
| 51 |
+
i += 1
|
| 52 |
+
|
| 53 |
+
predictions = predictions[:len(forecast_week)]
|
| 54 |
+
forecast_week = forecast_week[:len(predictions)]
|
| 55 |
+
|
| 56 |
+
forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
|
| 57 |
+
|
| 58 |
+
if graph_type == 'Line Graph':
|
| 59 |
+
fig = go.Figure()
|
| 60 |
+
fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
|
| 61 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
| 62 |
+
else: # Candlestick Graph
|
| 63 |
+
fig = go.Figure(data=[go.Candlestick(x=series['Date'],
|
| 64 |
+
open=series['Open'],
|
| 65 |
+
high=series['High'],
|
| 66 |
+
low=series['Low'],
|
| 67 |
+
close=series['Close'],
|
| 68 |
+
name='Historical')])
|
| 69 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
| 70 |
+
|
| 71 |
+
fig.update_layout(title=f"Stock Price of {stock_name}",
|
| 72 |
+
xaxis_title="Date",
|
| 73 |
+
yaxis_title="Price")
|
| 74 |
+
|
| 75 |
+
fundamentals = get_company_info(ticker_name)
|
| 76 |
+
|
| 77 |
+
return fig, fundamentals
|