Spaces:
Sleeping
Sleeping
import yfinance as yf | |
import pandas as pd | |
import plotly.graph_objects as go | |
import gradio as gr | |
from datetime import date, timedelta | |
from dateutil.relativedelta import relativedelta | |
# ... (keep the existing imports and global variables) | |
def get_company_info(ticker): | |
stock = yf.Ticker(ticker) | |
info = stock.info | |
# Select relevant fundamental information | |
fundamentals = { | |
"Company Name": info.get("longName", "N/A"), | |
"Sector": info.get("sector", "N/A"), | |
"Industry": info.get("industry", "N/A"), | |
"Market Cap": f"${info.get('marketCap', 'N/A'):,}", | |
"P/E Ratio": round(info.get("trailingPE", 0), 2), | |
"EPS": round(info.get("trailingEps", 0), 2), | |
"52 Week High": f"${info.get('fiftyTwoWeekHigh', 'N/A'):,}", | |
"52 Week Low": f"${info.get('fiftyTwoWeekLow', 'N/A'):,}", | |
"Dividend Yield": f"{info.get('dividendYield', 0) * 100:.2f}%", | |
"Beta": round(info.get("beta", 0), 2), | |
} | |
return pd.DataFrame(list(fundamentals.items()), columns=['Metric', 'Value']) | |
def get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method): | |
stock_name, ticker_name = stock.split(":") | |
if ticker_dict[idx] == 'FTSE 100': | |
ticker_name += '.L' if ticker_name[-1] != '.' else 'L' | |
elif ticker_dict[idx] == 'CAC 40': | |
ticker_name += '.PA' | |
# Get stock price data | |
series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval) | |
series = series.reset_index() | |
# Generate forecast | |
predictions = forecast_series(series, model=forecast_method) | |
# ... (keep the existing forecast date generation code) | |
# Create graph | |
if graph_type == 'Line Graph': | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical')) | |
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast')) | |
else: # Candlestick Graph | |
fig = go.Figure(data=[go.Candlestick(x=series['Date'], | |
open=series['Open'], | |
high=series['High'], | |
low=series['Low'], | |
close=series['Close'], | |
name='Historical')]) | |
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast')) | |
fig.update_layout(title=f"Stock Price of {stock_name}", | |
xaxis_title="Date", | |
yaxis_title="Price") | |
# Get fundamental information | |
fundamentals = get_company_info(ticker_name) | |
return fig, fundamentals | |
# Update the Gradio interface | |
with demo: | |
# ... (keep the existing input components) | |
out_graph = gr.Plot() | |
out_fundamentals = gr.DataFrame() | |
inputs = [d1, d2, d3, d4, d5] | |
outputs = [out_graph, out_fundamentals] | |
d2.input(get_stock_graph_and_info, inputs, outputs) | |
d3.input(get_stock_graph_and_info, inputs, outputs) | |
d4.input(get_stock_graph_and_info, inputs, outputs) | |
d5.input(get_stock_graph_and_info, inputs, outputs) | |
demo.launch() |