Spaces:
Build error
Build error
Update audio_processing.py
Browse files- audio_processing.py +82 -68
audio_processing.py
CHANGED
@@ -36,6 +36,9 @@ def load_models(model_size="small"):
|
|
36 |
device = "cpu"
|
37 |
compute_type = "int8"
|
38 |
whisper_model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
|
|
|
|
|
|
39 |
|
40 |
# Try to initialize diarization pipeline
|
41 |
try:
|
@@ -55,8 +58,55 @@ def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000
|
|
55 |
chunks.append(chunk)
|
56 |
return chunks
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
@spaces.GPU
|
59 |
-
def
|
60 |
global whisper_model, diarization_pipeline
|
61 |
|
62 |
if whisper_model is None:
|
@@ -66,71 +116,55 @@ def process_audio(audio_file, translate=False, model_size="small"):
|
|
66 |
|
67 |
try:
|
68 |
audio = whisperx.load_audio(audio_file)
|
|
|
69 |
|
70 |
-
# Perform diarization if pipeline is available
|
71 |
diarization_result = None
|
72 |
-
if
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
language_segments = []
|
81 |
final_segments = []
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
86 |
-
chunk_end_time = chunk_start_time + CHUNK_LENGTH
|
87 |
-
logger.info(f"Processing chunk {i+1}/{len(chunks)}")
|
88 |
-
lang = whisper_model.detect_language(chunk)
|
89 |
-
result_transcribe = whisper_model.transcribe(chunk, language=lang)
|
90 |
-
if translate:
|
91 |
-
result_translate = whisper_model.transcribe(chunk, task="translate")
|
92 |
-
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
93 |
-
for j, t_seg in enumerate(result_transcribe["segments"]):
|
94 |
-
segment_start = chunk_start_time + t_seg["start"]
|
95 |
-
segment_end = chunk_start_time + t_seg["end"]
|
96 |
-
# Skip segments in the overlapping region of the previous chunk
|
97 |
-
if i > 0 and segment_end <= chunk_start_time + overlap_duration:
|
98 |
-
print(f"Skipping segment in overlap with previous chunk: {segment_start:.2f} - {segment_end:.2f}")
|
99 |
-
continue
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
print(f"Skipping segment in overlap with next chunk: {segment_start:.2f} - {segment_end:.2f}")
|
104 |
-
continue
|
105 |
|
|
|
|
|
|
|
|
|
106 |
speaker = "Unknown"
|
107 |
if diarization_result is not None:
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
speakers.append(spk)
|
112 |
-
speaker = max(set(speakers), key=speakers.count) if speakers else "Unknown"
|
113 |
-
|
114 |
-
segment = {
|
115 |
"start": segment_start,
|
116 |
"end": segment_end,
|
117 |
"language": lang,
|
118 |
"speaker": speaker,
|
119 |
-
"text":
|
120 |
}
|
121 |
|
122 |
if translate:
|
123 |
-
segment["
|
|
|
|
|
|
|
124 |
|
125 |
-
final_segments.append(segment)
|
126 |
-
|
127 |
language_segments.append({
|
128 |
"language": lang,
|
129 |
-
"start":
|
130 |
-
"end":
|
131 |
})
|
132 |
-
chunk_end_time = time.time()
|
133 |
-
logger.info(f"Chunk {i+1} processed in {chunk_end_time - chunk_start_time:.2f} seconds")
|
134 |
|
135 |
final_segments.sort(key=lambda x: x["start"])
|
136 |
merged_segments = merge_nearby_segments(final_segments)
|
@@ -143,26 +177,6 @@ def process_audio(audio_file, translate=False, model_size="small"):
|
|
143 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
144 |
raise
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
150 |
-
merged.append(segment)
|
151 |
-
else:
|
152 |
-
# Find the overlap
|
153 |
-
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
154 |
-
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
155 |
-
|
156 |
-
if match.size / len(segment['text']) > similarity_threshold:
|
157 |
-
# Merge the segments
|
158 |
-
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
159 |
-
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
160 |
-
|
161 |
-
merged[-1]['end'] = segment['end']
|
162 |
-
merged[-1]['text'] = merged_text
|
163 |
-
if 'translated' in segment:
|
164 |
-
merged[-1]['translated'] = merged_translated
|
165 |
-
else:
|
166 |
-
# If no significant overlap, append as a new segment
|
167 |
-
merged.append(segment)
|
168 |
-
return merged
|
|
|
36 |
device = "cpu"
|
37 |
compute_type = "int8"
|
38 |
whisper_model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
39 |
+
|
40 |
+
def load_diarization_pipeline():
|
41 |
+
global diarization_pipeline, device
|
42 |
|
43 |
# Try to initialize diarization pipeline
|
44 |
try:
|
|
|
58 |
chunks.append(chunk)
|
59 |
return chunks
|
60 |
|
61 |
+
def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.7):
|
62 |
+
merged = []
|
63 |
+
for segment in segments:
|
64 |
+
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
65 |
+
merged.append(segment)
|
66 |
+
else:
|
67 |
+
# Find the overlap
|
68 |
+
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
69 |
+
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
70 |
+
|
71 |
+
if match.size / len(segment['text']) > similarity_threshold:
|
72 |
+
# Merge the segments
|
73 |
+
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
74 |
+
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
75 |
+
|
76 |
+
merged[-1]['end'] = segment['end']
|
77 |
+
merged[-1]['text'] = merged_text
|
78 |
+
if 'translated' in segment:
|
79 |
+
merged[-1]['translated'] = merged_translated
|
80 |
+
else:
|
81 |
+
# If no significant overlap, append as a new segment
|
82 |
+
merged.append(segment)
|
83 |
+
return merged
|
84 |
+
|
85 |
+
# Helper function to get the most common speaker in a time range
|
86 |
+
def get_most_common_speaker(diarization_result, start_time, end_time):
|
87 |
+
speakers = []
|
88 |
+
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
89 |
+
if turn.start <= end_time and turn.end >= start_time:
|
90 |
+
speakers.append(speaker)
|
91 |
+
return max(set(speakers), key=speakers.count) if speakers else "Unknown"
|
92 |
+
|
93 |
+
# Helper function to split long audio files
|
94 |
+
def split_audio(audio, max_duration=30):
|
95 |
+
sample_rate = 16000
|
96 |
+
max_samples = max_duration * sample_rate
|
97 |
+
|
98 |
+
if len(audio) <= max_samples:
|
99 |
+
return [audio]
|
100 |
+
|
101 |
+
splits = []
|
102 |
+
for i in range(0, len(audio), max_samples):
|
103 |
+
splits.append(audio[i:i+max_samples])
|
104 |
+
|
105 |
+
return splits
|
106 |
+
|
107 |
+
# Main processing function with optimizations
|
108 |
@spaces.GPU
|
109 |
+
def process_audio_optimized(audio_file, translate=False, model_size="small", use_diarization=True):
|
110 |
global whisper_model, diarization_pipeline
|
111 |
|
112 |
if whisper_model is None:
|
|
|
116 |
|
117 |
try:
|
118 |
audio = whisperx.load_audio(audio_file)
|
119 |
+
audio_splits = split_audio(audio)
|
120 |
|
121 |
+
# Perform diarization if requested and pipeline is available
|
122 |
diarization_result = None
|
123 |
+
if use_diarization:
|
124 |
+
if diarization_pipeline is None:
|
125 |
+
load_diarization_pipeline()
|
126 |
+
if diarization_pipeline is not None:
|
127 |
+
try:
|
128 |
+
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
129 |
+
except Exception as e:
|
130 |
+
logger.warning(f"Diarization failed: {str(e)}. Proceeding without diarization.")
|
131 |
|
132 |
language_segments = []
|
133 |
final_segments = []
|
134 |
|
135 |
+
for i, audio_split in enumerate(audio_splits):
|
136 |
+
logger.info(f"Processing split {i+1}/{len(audio_splits)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
result = whisper_model.transcribe(audio_split)
|
139 |
+
lang = result["language"]
|
|
|
|
|
140 |
|
141 |
+
for segment in result["segments"]:
|
142 |
+
segment_start = segment["start"] + (i * 30) # Adjust start time based on split
|
143 |
+
segment_end = segment["end"] + (i * 30) # Adjust end time based on split
|
144 |
+
|
145 |
speaker = "Unknown"
|
146 |
if diarization_result is not None:
|
147 |
+
speaker = get_most_common_speaker(diarization_result, segment_start, segment_end)
|
148 |
+
|
149 |
+
final_segment = {
|
|
|
|
|
|
|
|
|
150 |
"start": segment_start,
|
151 |
"end": segment_end,
|
152 |
"language": lang,
|
153 |
"speaker": speaker,
|
154 |
+
"text": segment["text"],
|
155 |
}
|
156 |
|
157 |
if translate:
|
158 |
+
translation = whisper_model.transcribe(audio_split[int(segment["start"]*16000):int(segment["end"]*16000)], task="translate")
|
159 |
+
final_segment["translated"] = translation["text"]
|
160 |
+
|
161 |
+
final_segments.append(final_segment)
|
162 |
|
|
|
|
|
163 |
language_segments.append({
|
164 |
"language": lang,
|
165 |
+
"start": i * 30,
|
166 |
+
"end": min((i + 1) * 30, len(audio) / 16000)
|
167 |
})
|
|
|
|
|
168 |
|
169 |
final_segments.sort(key=lambda x: x["start"])
|
170 |
merged_segments = merge_nearby_segments(final_segments)
|
|
|
177 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
178 |
raise
|
179 |
|
180 |
+
# You can keep the original process_audio function for backwards compatibility
|
181 |
+
# or replace it with the optimized version
|
182 |
+
process_audio = process_audio_optimized
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|