Spaces:
Build error
Build error
Update audio_processing.py
Browse files- audio_processing.py +89 -116
audio_processing.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import whisperx
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
@@ -10,50 +9,21 @@ load_dotenv()
|
|
| 10 |
import logging
|
| 11 |
import time
|
| 12 |
from difflib import SequenceMatcher
|
| 13 |
-
import spaces
|
| 14 |
-
|
| 15 |
hf_token = os.getenv("HF_TOKEN")
|
| 16 |
|
| 17 |
-
CHUNK_LENGTH
|
| 18 |
-
OVERLAP
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 21 |
logger = logging.getLogger(__name__)
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
-
|
| 25 |
-
def load_whisper_model(model_size="small"):
|
| 26 |
-
logger.info(f"Loading Whisper model (size: {model_size})...")
|
| 27 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
-
compute_type = "float16" if device == "cuda" else "int8"
|
| 29 |
-
try:
|
| 30 |
-
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
| 31 |
-
logger.info(f"Whisper model loaded successfully on {device}")
|
| 32 |
-
return model
|
| 33 |
-
except RuntimeError as e:
|
| 34 |
-
logger.warning(f"Failed to load Whisper model on {device}. Falling back to CPU. Error: {str(e)}")
|
| 35 |
-
device = "cpu"
|
| 36 |
-
compute_type = "int8"
|
| 37 |
-
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
| 38 |
-
logger.info("Whisper model loaded successfully on CPU")
|
| 39 |
-
return model
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
@spaces.GPU(duration=60)
|
| 43 |
-
def load_diarization_pipeline():
|
| 44 |
-
logger.info("Loading diarization pipeline...")
|
| 45 |
-
try:
|
| 46 |
-
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
| 47 |
-
if torch.cuda.is_available():
|
| 48 |
-
pipeline = pipeline.to(torch.device("cuda"))
|
| 49 |
-
logger.info("Diarization pipeline loaded successfully")
|
| 50 |
-
return pipeline
|
| 51 |
-
except Exception as e:
|
| 52 |
-
logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.")
|
| 53 |
-
return None
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000):
|
| 57 |
chunks = []
|
| 58 |
for i in range(0, len(audio), chunk_size - overlap):
|
| 59 |
chunk = audio[i:i+chunk_size]
|
|
@@ -62,103 +32,75 @@ def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000
|
|
| 62 |
chunks.append(chunk)
|
| 63 |
return chunks
|
| 64 |
|
| 65 |
-
|
| 66 |
-
def
|
| 67 |
-
merged = []
|
| 68 |
-
for segment in segments:
|
| 69 |
-
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
| 70 |
-
merged.append(segment)
|
| 71 |
-
else:
|
| 72 |
-
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
| 73 |
-
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
| 74 |
-
|
| 75 |
-
if match.size / len(segment['text']) > similarity_threshold:
|
| 76 |
-
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
| 77 |
-
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
| 78 |
-
|
| 79 |
-
merged[-1]['end'] = segment['end']
|
| 80 |
-
merged[-1]['text'] = merged_text
|
| 81 |
-
if 'translated' in segment:
|
| 82 |
-
merged[-1]['translated'] = merged_translated
|
| 83 |
-
else:
|
| 84 |
-
merged.append(segment)
|
| 85 |
-
return merged
|
| 86 |
-
|
| 87 |
-
def get_most_common_speaker(diarization_result, start_time, end_time):
|
| 88 |
-
speakers = []
|
| 89 |
-
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
| 90 |
-
if turn.start <= end_time and turn.end >= start_time:
|
| 91 |
-
speakers.append(speaker)
|
| 92 |
-
return max(set(speakers), key=speakers.count) if speakers else "Unknown"
|
| 93 |
-
|
| 94 |
-
def split_audio(audio, max_duration=30):
|
| 95 |
-
sample_rate = 16000
|
| 96 |
-
max_samples = max_duration * sample_rate
|
| 97 |
-
|
| 98 |
-
if len(audio) <= max_samples:
|
| 99 |
-
return [audio]
|
| 100 |
-
|
| 101 |
-
splits = []
|
| 102 |
-
for i in range(0, len(audio), max_samples):
|
| 103 |
-
splits.append(audio[i:i+max_samples])
|
| 104 |
-
|
| 105 |
-
return splits
|
| 106 |
-
|
| 107 |
-
@spaces.GPU(duration=60)
|
| 108 |
-
def process_audio(audio_file, translate=False, model_size="small", use_diarization=True):
|
| 109 |
-
logger.info(f"Starting audio processing: translate={translate}, model_size={model_size}, use_diarization={use_diarization}")
|
| 110 |
start_time = time.time()
|
| 111 |
|
| 112 |
try:
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
audio = whisperx.load_audio(audio_file)
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
if use_diarization:
|
| 119 |
-
diarization_pipeline = load_diarization_pipeline()
|
| 120 |
-
if diarization_pipeline is not None:
|
| 121 |
-
try:
|
| 122 |
-
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
| 123 |
-
except Exception as e:
|
| 124 |
-
logger.warning(f"Diarization failed: {str(e)}. Proceeding without diarization.")
|
| 125 |
|
| 126 |
language_segments = []
|
| 127 |
final_segments = []
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
speaker = get_most_common_speaker(diarization_result, segment_start, segment_end)
|
| 142 |
-
|
| 143 |
-
final_segment = {
|
| 144 |
"start": segment_start,
|
| 145 |
"end": segment_end,
|
| 146 |
"language": lang,
|
| 147 |
-
"speaker":
|
| 148 |
-
"text":
|
| 149 |
}
|
| 150 |
|
| 151 |
if translate:
|
| 152 |
-
|
| 153 |
-
final_segment["translated"] = translation["text"]
|
| 154 |
-
|
| 155 |
-
final_segments.append(final_segment)
|
| 156 |
|
|
|
|
|
|
|
| 157 |
language_segments.append({
|
| 158 |
"language": lang,
|
| 159 |
-
"start":
|
| 160 |
-
"end":
|
| 161 |
})
|
|
|
|
|
|
|
| 162 |
|
| 163 |
final_segments.sort(key=lambda x: x["start"])
|
| 164 |
merged_segments = merge_nearby_segments(final_segments)
|
|
@@ -166,7 +108,38 @@ def process_audio(audio_file, translate=False, model_size="small", use_diarizati
|
|
| 166 |
end_time = time.time()
|
| 167 |
logger.info(f"Total processing time: {end_time - start_time:.2f} seconds")
|
| 168 |
|
| 169 |
-
return language_segments,
|
| 170 |
except Exception as e:
|
| 171 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
| 172 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import whisperx
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
|
|
|
| 9 |
import logging
|
| 10 |
import time
|
| 11 |
from difflib import SequenceMatcher
|
|
|
|
|
|
|
| 12 |
hf_token = os.getenv("HF_TOKEN")
|
| 13 |
|
| 14 |
+
CHUNK_LENGTH=5
|
| 15 |
+
OVERLAP=0
|
| 16 |
+
import whisperx
|
| 17 |
+
import torch
|
| 18 |
+
import numpy as np
|
| 19 |
+
|
| 20 |
|
| 21 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 22 |
logger = logging.getLogger(__name__)
|
| 23 |
+
import spaces
|
| 24 |
|
| 25 |
|
| 26 |
+
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000): # 2 seconds overlap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
chunks = []
|
| 28 |
for i in range(0, len(audio), chunk_size - overlap):
|
| 29 |
chunk = audio[i:i+chunk_size]
|
|
|
|
| 32 |
chunks.append(chunk)
|
| 33 |
return chunks
|
| 34 |
|
| 35 |
+
@spaces.GPU()
|
| 36 |
+
def process_audio(audio_file, translate=False, model_size="small"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
start_time = time.time()
|
| 38 |
|
| 39 |
try:
|
| 40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
+
print(f"Using device: {device}")
|
| 42 |
+
compute_type = "int8" if torch.cuda.is_available() else "float32"
|
| 43 |
audio = whisperx.load_audio(audio_file)
|
| 44 |
+
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
| 45 |
+
|
| 46 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
| 47 |
+
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
| 48 |
+
|
| 49 |
+
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
| 50 |
|
| 51 |
+
chunks = preprocess_audio(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
language_segments = []
|
| 54 |
final_segments = []
|
| 55 |
|
| 56 |
+
overlap_duration = OVERLAP # 2 seconds overlap
|
| 57 |
+
for i, chunk in enumerate(chunks):
|
| 58 |
+
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
| 59 |
+
chunk_end_time = chunk_start_time + CHUNK_LENGTH
|
| 60 |
+
logger.info(f"Processing chunk {i+1}/{len(chunks)}")
|
| 61 |
+
lang = model.detect_language(chunk)
|
| 62 |
+
result_transcribe = model.transcribe(chunk, language=lang)
|
| 63 |
+
if translate:
|
| 64 |
+
result_translate = model.transcribe(chunk, task="translate")
|
| 65 |
+
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
| 66 |
+
for j, t_seg in enumerate(result_transcribe["segments"]):
|
| 67 |
+
segment_start = chunk_start_time + t_seg["start"]
|
| 68 |
+
segment_end = chunk_start_time + t_seg["end"]
|
| 69 |
+
# Skip segments in the overlapping region of the previous chunk
|
| 70 |
+
if i > 0 and segment_end <= chunk_start_time + overlap_duration:
|
| 71 |
+
print(f"Skipping segment in overlap with previous chunk: {segment_start:.2f} - {segment_end:.2f}")
|
| 72 |
+
continue
|
| 73 |
|
| 74 |
+
# Skip segments in the overlapping region of the next chunk
|
| 75 |
+
if i < len(chunks) - 1 and segment_start >= chunk_end_time - overlap_duration:
|
| 76 |
+
print(f"Skipping segment in overlap with next chunk: {segment_start:.2f} - {segment_end:.2f}")
|
| 77 |
+
continue
|
| 78 |
|
| 79 |
+
speakers = []
|
| 80 |
+
for turn, track, speaker in diarization_result.itertracks(yield_label=True):
|
| 81 |
+
if turn.start <= segment_end and turn.end >= segment_start:
|
| 82 |
+
speakers.append(speaker)
|
| 83 |
+
|
| 84 |
+
segment = {
|
|
|
|
|
|
|
|
|
|
| 85 |
"start": segment_start,
|
| 86 |
"end": segment_end,
|
| 87 |
"language": lang,
|
| 88 |
+
"speaker": max(set(speakers), key=speakers.count) if speakers else "Unknown",
|
| 89 |
+
"text": t_seg["text"],
|
| 90 |
}
|
| 91 |
|
| 92 |
if translate:
|
| 93 |
+
segment["translated"] = result_translate["segments"][j]["text"]
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
final_segments.append(segment)
|
| 96 |
+
|
| 97 |
language_segments.append({
|
| 98 |
"language": lang,
|
| 99 |
+
"start": chunk_start_time,
|
| 100 |
+
"end": chunk_start_time + CHUNK_LENGTH
|
| 101 |
})
|
| 102 |
+
chunk_end_time = time.time()
|
| 103 |
+
logger.info(f"Chunk {i+1} processed in {chunk_end_time - chunk_start_time:.2f} seconds")
|
| 104 |
|
| 105 |
final_segments.sort(key=lambda x: x["start"])
|
| 106 |
merged_segments = merge_nearby_segments(final_segments)
|
|
|
|
| 108 |
end_time = time.time()
|
| 109 |
logger.info(f"Total processing time: {end_time - start_time:.2f} seconds")
|
| 110 |
|
| 111 |
+
return language_segments, final_segments
|
| 112 |
except Exception as e:
|
| 113 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
| 114 |
+
raise
|
| 115 |
+
|
| 116 |
+
def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.9):
|
| 117 |
+
merged = []
|
| 118 |
+
for segment in segments:
|
| 119 |
+
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
| 120 |
+
merged.append(segment)
|
| 121 |
+
else:
|
| 122 |
+
# Find the overlap
|
| 123 |
+
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
| 124 |
+
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
| 125 |
+
|
| 126 |
+
if match.size / len(segment['text']) > similarity_threshold:
|
| 127 |
+
# Merge the segments
|
| 128 |
+
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
| 129 |
+
merged_translated = merged[-1]['translated'] + segment['translated'][match.b + match.size:]
|
| 130 |
+
|
| 131 |
+
merged[-1]['end'] = segment['end']
|
| 132 |
+
merged[-1]['text'] = merged_text
|
| 133 |
+
merged[-1]['translated'] = merged_translated
|
| 134 |
+
else:
|
| 135 |
+
# If no significant overlap, append as a new segment
|
| 136 |
+
merged.append(segment)
|
| 137 |
+
return merged
|
| 138 |
+
|
| 139 |
+
def print_results(segments):
|
| 140 |
+
for segment in segments:
|
| 141 |
+
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:")
|
| 142 |
+
print(f"Original: {segment['text']}")
|
| 143 |
+
if 'translated' in segment:
|
| 144 |
+
print(f"Translated: {segment['translated']}")
|
| 145 |
+
print()
|