Spaces:
Build error
Build error
Update audio_processing.py
Browse files- audio_processing.py +89 -116
audio_processing.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import whisperx
|
3 |
import torch
|
4 |
import numpy as np
|
@@ -10,50 +9,21 @@ load_dotenv()
|
|
10 |
import logging
|
11 |
import time
|
12 |
from difflib import SequenceMatcher
|
13 |
-
import spaces
|
14 |
-
|
15 |
hf_token = os.getenv("HF_TOKEN")
|
16 |
|
17 |
-
CHUNK_LENGTH
|
18 |
-
OVERLAP
|
|
|
|
|
|
|
|
|
19 |
|
20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
21 |
logger = logging.getLogger(__name__)
|
|
|
22 |
|
23 |
|
24 |
-
|
25 |
-
def load_whisper_model(model_size="small"):
|
26 |
-
logger.info(f"Loading Whisper model (size: {model_size})...")
|
27 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
-
compute_type = "float16" if device == "cuda" else "int8"
|
29 |
-
try:
|
30 |
-
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
31 |
-
logger.info(f"Whisper model loaded successfully on {device}")
|
32 |
-
return model
|
33 |
-
except RuntimeError as e:
|
34 |
-
logger.warning(f"Failed to load Whisper model on {device}. Falling back to CPU. Error: {str(e)}")
|
35 |
-
device = "cpu"
|
36 |
-
compute_type = "int8"
|
37 |
-
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
38 |
-
logger.info("Whisper model loaded successfully on CPU")
|
39 |
-
return model
|
40 |
-
|
41 |
-
|
42 |
-
@spaces.GPU(duration=60)
|
43 |
-
def load_diarization_pipeline():
|
44 |
-
logger.info("Loading diarization pipeline...")
|
45 |
-
try:
|
46 |
-
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
47 |
-
if torch.cuda.is_available():
|
48 |
-
pipeline = pipeline.to(torch.device("cuda"))
|
49 |
-
logger.info("Diarization pipeline loaded successfully")
|
50 |
-
return pipeline
|
51 |
-
except Exception as e:
|
52 |
-
logger.warning(f"Diarization pipeline initialization failed: {str(e)}. Diarization will not be available.")
|
53 |
-
return None
|
54 |
-
|
55 |
-
|
56 |
-
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000):
|
57 |
chunks = []
|
58 |
for i in range(0, len(audio), chunk_size - overlap):
|
59 |
chunk = audio[i:i+chunk_size]
|
@@ -62,103 +32,75 @@ def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000
|
|
62 |
chunks.append(chunk)
|
63 |
return chunks
|
64 |
|
65 |
-
|
66 |
-
def
|
67 |
-
merged = []
|
68 |
-
for segment in segments:
|
69 |
-
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
70 |
-
merged.append(segment)
|
71 |
-
else:
|
72 |
-
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
73 |
-
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
74 |
-
|
75 |
-
if match.size / len(segment['text']) > similarity_threshold:
|
76 |
-
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
77 |
-
merged_translated = merged[-1].get('translated', '') + segment.get('translated', '')[match.b + match.size:]
|
78 |
-
|
79 |
-
merged[-1]['end'] = segment['end']
|
80 |
-
merged[-1]['text'] = merged_text
|
81 |
-
if 'translated' in segment:
|
82 |
-
merged[-1]['translated'] = merged_translated
|
83 |
-
else:
|
84 |
-
merged.append(segment)
|
85 |
-
return merged
|
86 |
-
|
87 |
-
def get_most_common_speaker(diarization_result, start_time, end_time):
|
88 |
-
speakers = []
|
89 |
-
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
90 |
-
if turn.start <= end_time and turn.end >= start_time:
|
91 |
-
speakers.append(speaker)
|
92 |
-
return max(set(speakers), key=speakers.count) if speakers else "Unknown"
|
93 |
-
|
94 |
-
def split_audio(audio, max_duration=30):
|
95 |
-
sample_rate = 16000
|
96 |
-
max_samples = max_duration * sample_rate
|
97 |
-
|
98 |
-
if len(audio) <= max_samples:
|
99 |
-
return [audio]
|
100 |
-
|
101 |
-
splits = []
|
102 |
-
for i in range(0, len(audio), max_samples):
|
103 |
-
splits.append(audio[i:i+max_samples])
|
104 |
-
|
105 |
-
return splits
|
106 |
-
|
107 |
-
@spaces.GPU(duration=60)
|
108 |
-
def process_audio(audio_file, translate=False, model_size="small", use_diarization=True):
|
109 |
-
logger.info(f"Starting audio processing: translate={translate}, model_size={model_size}, use_diarization={use_diarization}")
|
110 |
start_time = time.time()
|
111 |
|
112 |
try:
|
113 |
-
|
|
|
|
|
114 |
audio = whisperx.load_audio(audio_file)
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
if use_diarization:
|
119 |
-
diarization_pipeline = load_diarization_pipeline()
|
120 |
-
if diarization_pipeline is not None:
|
121 |
-
try:
|
122 |
-
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
123 |
-
except Exception as e:
|
124 |
-
logger.warning(f"Diarization failed: {str(e)}. Proceeding without diarization.")
|
125 |
|
126 |
language_segments = []
|
127 |
final_segments = []
|
128 |
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
speaker = get_most_common_speaker(diarization_result, segment_start, segment_end)
|
142 |
-
|
143 |
-
final_segment = {
|
144 |
"start": segment_start,
|
145 |
"end": segment_end,
|
146 |
"language": lang,
|
147 |
-
"speaker":
|
148 |
-
"text":
|
149 |
}
|
150 |
|
151 |
if translate:
|
152 |
-
|
153 |
-
final_segment["translated"] = translation["text"]
|
154 |
-
|
155 |
-
final_segments.append(final_segment)
|
156 |
|
|
|
|
|
157 |
language_segments.append({
|
158 |
"language": lang,
|
159 |
-
"start":
|
160 |
-
"end":
|
161 |
})
|
|
|
|
|
162 |
|
163 |
final_segments.sort(key=lambda x: x["start"])
|
164 |
merged_segments = merge_nearby_segments(final_segments)
|
@@ -166,7 +108,38 @@ def process_audio(audio_file, translate=False, model_size="small", use_diarizati
|
|
166 |
end_time = time.time()
|
167 |
logger.info(f"Total processing time: {end_time - start_time:.2f} seconds")
|
168 |
|
169 |
-
return language_segments,
|
170 |
except Exception as e:
|
171 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
172 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import whisperx
|
2 |
import torch
|
3 |
import numpy as np
|
|
|
9 |
import logging
|
10 |
import time
|
11 |
from difflib import SequenceMatcher
|
|
|
|
|
12 |
hf_token = os.getenv("HF_TOKEN")
|
13 |
|
14 |
+
CHUNK_LENGTH=5
|
15 |
+
OVERLAP=0
|
16 |
+
import whisperx
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
|
21 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
22 |
logger = logging.getLogger(__name__)
|
23 |
+
import spaces
|
24 |
|
25 |
|
26 |
+
def preprocess_audio(audio, chunk_size=CHUNK_LENGTH*16000, overlap=OVERLAP*16000): # 2 seconds overlap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
chunks = []
|
28 |
for i in range(0, len(audio), chunk_size - overlap):
|
29 |
chunk = audio[i:i+chunk_size]
|
|
|
32 |
chunks.append(chunk)
|
33 |
return chunks
|
34 |
|
35 |
+
@spaces.GPU()
|
36 |
+
def process_audio(audio_file, translate=False, model_size="small"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
start_time = time.time()
|
38 |
|
39 |
try:
|
40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
print(f"Using device: {device}")
|
42 |
+
compute_type = "int8" if torch.cuda.is_available() else "float32"
|
43 |
audio = whisperx.load_audio(audio_file)
|
44 |
+
model = whisperx.load_model(model_size, device, compute_type=compute_type)
|
45 |
+
|
46 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
47 |
+
diarization_pipeline = diarization_pipeline.to(torch.device(device))
|
48 |
+
|
49 |
+
diarization_result = diarization_pipeline({"waveform": torch.from_numpy(audio).unsqueeze(0), "sample_rate": 16000})
|
50 |
|
51 |
+
chunks = preprocess_audio(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
language_segments = []
|
54 |
final_segments = []
|
55 |
|
56 |
+
overlap_duration = OVERLAP # 2 seconds overlap
|
57 |
+
for i, chunk in enumerate(chunks):
|
58 |
+
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
59 |
+
chunk_end_time = chunk_start_time + CHUNK_LENGTH
|
60 |
+
logger.info(f"Processing chunk {i+1}/{len(chunks)}")
|
61 |
+
lang = model.detect_language(chunk)
|
62 |
+
result_transcribe = model.transcribe(chunk, language=lang)
|
63 |
+
if translate:
|
64 |
+
result_translate = model.transcribe(chunk, task="translate")
|
65 |
+
chunk_start_time = i * (CHUNK_LENGTH - overlap_duration)
|
66 |
+
for j, t_seg in enumerate(result_transcribe["segments"]):
|
67 |
+
segment_start = chunk_start_time + t_seg["start"]
|
68 |
+
segment_end = chunk_start_time + t_seg["end"]
|
69 |
+
# Skip segments in the overlapping region of the previous chunk
|
70 |
+
if i > 0 and segment_end <= chunk_start_time + overlap_duration:
|
71 |
+
print(f"Skipping segment in overlap with previous chunk: {segment_start:.2f} - {segment_end:.2f}")
|
72 |
+
continue
|
73 |
|
74 |
+
# Skip segments in the overlapping region of the next chunk
|
75 |
+
if i < len(chunks) - 1 and segment_start >= chunk_end_time - overlap_duration:
|
76 |
+
print(f"Skipping segment in overlap with next chunk: {segment_start:.2f} - {segment_end:.2f}")
|
77 |
+
continue
|
78 |
|
79 |
+
speakers = []
|
80 |
+
for turn, track, speaker in diarization_result.itertracks(yield_label=True):
|
81 |
+
if turn.start <= segment_end and turn.end >= segment_start:
|
82 |
+
speakers.append(speaker)
|
83 |
+
|
84 |
+
segment = {
|
|
|
|
|
|
|
85 |
"start": segment_start,
|
86 |
"end": segment_end,
|
87 |
"language": lang,
|
88 |
+
"speaker": max(set(speakers), key=speakers.count) if speakers else "Unknown",
|
89 |
+
"text": t_seg["text"],
|
90 |
}
|
91 |
|
92 |
if translate:
|
93 |
+
segment["translated"] = result_translate["segments"][j]["text"]
|
|
|
|
|
|
|
94 |
|
95 |
+
final_segments.append(segment)
|
96 |
+
|
97 |
language_segments.append({
|
98 |
"language": lang,
|
99 |
+
"start": chunk_start_time,
|
100 |
+
"end": chunk_start_time + CHUNK_LENGTH
|
101 |
})
|
102 |
+
chunk_end_time = time.time()
|
103 |
+
logger.info(f"Chunk {i+1} processed in {chunk_end_time - chunk_start_time:.2f} seconds")
|
104 |
|
105 |
final_segments.sort(key=lambda x: x["start"])
|
106 |
merged_segments = merge_nearby_segments(final_segments)
|
|
|
108 |
end_time = time.time()
|
109 |
logger.info(f"Total processing time: {end_time - start_time:.2f} seconds")
|
110 |
|
111 |
+
return language_segments, final_segments
|
112 |
except Exception as e:
|
113 |
logger.error(f"An error occurred during audio processing: {str(e)}")
|
114 |
+
raise
|
115 |
+
|
116 |
+
def merge_nearby_segments(segments, time_threshold=0.5, similarity_threshold=0.9):
|
117 |
+
merged = []
|
118 |
+
for segment in segments:
|
119 |
+
if not merged or segment['start'] - merged[-1]['end'] > time_threshold:
|
120 |
+
merged.append(segment)
|
121 |
+
else:
|
122 |
+
# Find the overlap
|
123 |
+
matcher = SequenceMatcher(None, merged[-1]['text'], segment['text'])
|
124 |
+
match = matcher.find_longest_match(0, len(merged[-1]['text']), 0, len(segment['text']))
|
125 |
+
|
126 |
+
if match.size / len(segment['text']) > similarity_threshold:
|
127 |
+
# Merge the segments
|
128 |
+
merged_text = merged[-1]['text'] + segment['text'][match.b + match.size:]
|
129 |
+
merged_translated = merged[-1]['translated'] + segment['translated'][match.b + match.size:]
|
130 |
+
|
131 |
+
merged[-1]['end'] = segment['end']
|
132 |
+
merged[-1]['text'] = merged_text
|
133 |
+
merged[-1]['translated'] = merged_translated
|
134 |
+
else:
|
135 |
+
# If no significant overlap, append as a new segment
|
136 |
+
merged.append(segment)
|
137 |
+
return merged
|
138 |
+
|
139 |
+
def print_results(segments):
|
140 |
+
for segment in segments:
|
141 |
+
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:")
|
142 |
+
print(f"Original: {segment['text']}")
|
143 |
+
if 'translated' in segment:
|
144 |
+
print(f"Translated: {segment['translated']}")
|
145 |
+
print()
|