Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
from audio_processing import process_audio, print_results
|
3 |
-
from transformers import
|
4 |
import spaces
|
5 |
import torch
|
6 |
|
@@ -8,14 +8,18 @@ import torch
|
|
8 |
cuda_available = torch.cuda.is_available()
|
9 |
device = "cuda" if cuda_available else "cpu"
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
12 |
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn").to(device)
|
13 |
summarizer_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
14 |
|
15 |
qa_model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-cased-distilled-squad").to(device)
|
16 |
qa_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased-distilled-squad")
|
|
|
17 |
|
18 |
-
@spaces.GPU
|
19 |
def transcribe_audio(audio_file, translate, model_size):
|
20 |
language_segments, final_segments = process_audio(audio_file, translate=translate, model_size=model_size)
|
21 |
|
@@ -38,14 +42,14 @@ def transcribe_audio(audio_file, translate, model_size):
|
|
38 |
|
39 |
return output, full_text
|
40 |
|
41 |
-
@spaces.GPU
|
42 |
def summarize_text(text):
|
43 |
inputs = summarizer_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt").to(device)
|
44 |
summary_ids = summarizer_model.generate(inputs["input_ids"], max_length=150, min_length=50, do_sample=False)
|
45 |
summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
46 |
return summary
|
47 |
|
48 |
-
@spaces.GPU
|
49 |
def answer_question(context, question):
|
50 |
inputs = qa_tokenizer(question, context, return_tensors="pt").to(device)
|
51 |
outputs = qa_model(**inputs)
|
@@ -54,13 +58,13 @@ def answer_question(context, question):
|
|
54 |
answer = qa_tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
|
55 |
return answer
|
56 |
|
57 |
-
@spaces.GPU
|
58 |
def process_and_summarize(audio_file, translate, model_size):
|
59 |
transcription, full_text = transcribe_audio(audio_file, translate, model_size)
|
60 |
summary = summarize_text(full_text)
|
61 |
return transcription, summary
|
62 |
|
63 |
-
@spaces.GPU
|
64 |
def qa_interface(audio_file, translate, model_size, question):
|
65 |
_, full_text = transcribe_audio(audio_file, translate, model_size)
|
66 |
answer = answer_question(full_text, question)
|
|
|
1 |
import gradio as gr
|
2 |
+
from audio_processing import process_audio, print_results, load_models
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
|
4 |
import spaces
|
5 |
import torch
|
6 |
|
|
|
8 |
cuda_available = torch.cuda.is_available()
|
9 |
device = "cuda" if cuda_available else "cpu"
|
10 |
|
11 |
+
# Load models globally
|
12 |
+
print("Loading models...")
|
13 |
+
load_models() # Load Whisper and diarization models
|
14 |
+
|
15 |
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn").to(device)
|
16 |
summarizer_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
17 |
|
18 |
qa_model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-cased-distilled-squad").to(device)
|
19 |
qa_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased-distilled-squad")
|
20 |
+
print("Models loaded successfully.")
|
21 |
|
22 |
+
@spaces.GPU
|
23 |
def transcribe_audio(audio_file, translate, model_size):
|
24 |
language_segments, final_segments = process_audio(audio_file, translate=translate, model_size=model_size)
|
25 |
|
|
|
42 |
|
43 |
return output, full_text
|
44 |
|
45 |
+
@spaces.GPU
|
46 |
def summarize_text(text):
|
47 |
inputs = summarizer_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt").to(device)
|
48 |
summary_ids = summarizer_model.generate(inputs["input_ids"], max_length=150, min_length=50, do_sample=False)
|
49 |
summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
50 |
return summary
|
51 |
|
52 |
+
@spaces.GPU
|
53 |
def answer_question(context, question):
|
54 |
inputs = qa_tokenizer(question, context, return_tensors="pt").to(device)
|
55 |
outputs = qa_model(**inputs)
|
|
|
58 |
answer = qa_tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
|
59 |
return answer
|
60 |
|
61 |
+
@spaces.GPU
|
62 |
def process_and_summarize(audio_file, translate, model_size):
|
63 |
transcription, full_text = transcribe_audio(audio_file, translate, model_size)
|
64 |
summary = summarize_text(full_text)
|
65 |
return transcription, summary
|
66 |
|
67 |
+
@spaces.GPU
|
68 |
def qa_interface(audio_file, translate, model_size, question):
|
69 |
_, full_text = transcribe_audio(audio_file, translate, model_size)
|
70 |
answer = answer_question(full_text, question)
|