Spaces:
Build error
Build error
Optimized app.py with on-demand model loading and lighter models
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from audio_processing import process_audio
|
| 3 |
from transformers import pipeline
|
| 4 |
import spaces
|
| 5 |
import torch
|
|
@@ -7,41 +7,27 @@ import logging
|
|
| 7 |
import traceback
|
| 8 |
import sys
|
| 9 |
|
| 10 |
-
# Set up logging
|
| 11 |
logging.basicConfig(
|
| 12 |
level=logging.INFO,
|
| 13 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 14 |
handlers=[
|
| 15 |
-
logging.StreamHandler(sys.stdout)
|
| 16 |
-
logging.FileHandler('app.log')
|
| 17 |
]
|
| 18 |
)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
-
# Check if CUDA is available
|
| 22 |
-
cuda_available = torch.cuda.is_available()
|
| 23 |
-
device = "cuda" if cuda_available else "cpu"
|
| 24 |
-
logger.info(f"Using device: {device}")
|
| 25 |
-
|
| 26 |
-
# Load Whisper model
|
| 27 |
-
# print("Loading Whisper model...")
|
| 28 |
-
# try:
|
| 29 |
-
# load_models() # Load Whisper model
|
| 30 |
-
# except Exception as e:
|
| 31 |
-
# logger.error(f"Error loading Whisper model: {str(e)}")
|
| 32 |
-
# raise
|
| 33 |
-
|
| 34 |
-
print("Whisper model loaded successfully.")
|
| 35 |
-
|
| 36 |
def load_summarization_model():
|
| 37 |
logger.info("Loading summarization model...")
|
| 38 |
try:
|
|
|
|
| 39 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=0 if cuda_available else -1)
|
|
|
|
|
|
|
| 40 |
except Exception as e:
|
| 41 |
logger.warning(f"Failed to load summarization model on GPU. Falling back to CPU. Error: {str(e)}")
|
| 42 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
def process_with_fallback(func, *args, **kwargs):
|
| 47 |
try:
|
|
@@ -51,7 +37,6 @@ def process_with_fallback(func, *args, **kwargs):
|
|
| 51 |
logger.error(traceback.format_exc())
|
| 52 |
if "CUDA" in str(e) or "GPU" in str(e):
|
| 53 |
logger.info("Falling back to CPU processing...")
|
| 54 |
-
# Modify kwargs to force CPU processing
|
| 55 |
kwargs['use_gpu'] = False
|
| 56 |
return func(*args, **kwargs)
|
| 57 |
else:
|
|
@@ -59,24 +44,58 @@ def process_with_fallback(func, *args, **kwargs):
|
|
| 59 |
|
| 60 |
@spaces.GPU(duration=60)
|
| 61 |
def transcribe_audio(audio_file, translate, model_size, use_diarization):
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
@spaces.GPU(duration=60)
|
| 65 |
def summarize_text(text):
|
| 66 |
-
|
| 67 |
try:
|
|
|
|
| 68 |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
|
|
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
-
logger.error(f"
|
| 71 |
logger.error(traceback.format_exc())
|
| 72 |
-
|
| 73 |
-
return summary
|
| 74 |
|
| 75 |
@spaces.GPU(duration=60)
|
| 76 |
def process_and_summarize(audio_file, translate, model_size, use_diarization, do_summarize):
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Main interface
|
| 82 |
with gr.Blocks() as iface:
|
|
@@ -105,8 +124,8 @@ with gr.Blocks() as iface:
|
|
| 105 |
gr.Markdown(
|
| 106 |
f"""
|
| 107 |
## System Information
|
| 108 |
-
- Device: {
|
| 109 |
-
- CUDA Available: {"Yes" if
|
| 110 |
|
| 111 |
## ZeroGPU Support
|
| 112 |
This application supports ZeroGPU for Hugging Face Spaces pro users.
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from audio_processing import process_audio
|
| 3 |
from transformers import pipeline
|
| 4 |
import spaces
|
| 5 |
import torch
|
|
|
|
| 7 |
import traceback
|
| 8 |
import sys
|
| 9 |
|
|
|
|
| 10 |
logging.basicConfig(
|
| 11 |
level=logging.INFO,
|
| 12 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 13 |
handlers=[
|
| 14 |
+
logging.StreamHandler(sys.stdout)
|
|
|
|
| 15 |
]
|
| 16 |
)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def load_summarization_model():
|
| 20 |
logger.info("Loading summarization model...")
|
| 21 |
try:
|
| 22 |
+
cuda_available = torch.cuda.is_available()
|
| 23 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=0 if cuda_available else -1)
|
| 24 |
+
logger.info(f"Summarization model loaded successfully on {'GPU' if cuda_available else 'CPU'}")
|
| 25 |
+
return summarizer
|
| 26 |
except Exception as e:
|
| 27 |
logger.warning(f"Failed to load summarization model on GPU. Falling back to CPU. Error: {str(e)}")
|
| 28 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
| 29 |
+
logger.info("Summarization model loaded successfully on CPU")
|
| 30 |
+
return summarizer
|
| 31 |
|
| 32 |
def process_with_fallback(func, *args, **kwargs):
|
| 33 |
try:
|
|
|
|
| 37 |
logger.error(traceback.format_exc())
|
| 38 |
if "CUDA" in str(e) or "GPU" in str(e):
|
| 39 |
logger.info("Falling back to CPU processing...")
|
|
|
|
| 40 |
kwargs['use_gpu'] = False
|
| 41 |
return func(*args, **kwargs)
|
| 42 |
else:
|
|
|
|
| 44 |
|
| 45 |
@spaces.GPU(duration=60)
|
| 46 |
def transcribe_audio(audio_file, translate, model_size, use_diarization):
|
| 47 |
+
logger.info(f"Starting transcription: translate={translate}, model_size={model_size}, use_diarization={use_diarization}")
|
| 48 |
+
try:
|
| 49 |
+
result = process_with_fallback(process_audio, audio_file, translate=translate, model_size=model_size, use_diarization=use_diarization)
|
| 50 |
+
logger.info("Transcription completed successfully")
|
| 51 |
+
return result
|
| 52 |
+
except Exception as e:
|
| 53 |
+
logger.error(f"Transcription failed: {str(e)}")
|
| 54 |
+
raise gr.Error(f"Transcription failed: {str(e)}")
|
| 55 |
|
| 56 |
@spaces.GPU(duration=60)
|
| 57 |
def summarize_text(text):
|
| 58 |
+
logger.info("Starting text summarization")
|
| 59 |
try:
|
| 60 |
+
summarizer = load_summarization_model()
|
| 61 |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
| 62 |
+
logger.info("Summarization completed successfully")
|
| 63 |
+
return summary
|
| 64 |
except Exception as e:
|
| 65 |
+
logger.error(f"Summarization failed: {str(e)}")
|
| 66 |
logger.error(traceback.format_exc())
|
| 67 |
+
return "Error occurred during summarization. Please try again."
|
|
|
|
| 68 |
|
| 69 |
@spaces.GPU(duration=60)
|
| 70 |
def process_and_summarize(audio_file, translate, model_size, use_diarization, do_summarize):
|
| 71 |
+
logger.info(f"Starting process_and_summarize: translate={translate}, model_size={model_size}, use_diarization={use_diarization}, do_summarize={do_summarize}")
|
| 72 |
+
try:
|
| 73 |
+
language_segments, final_segments = transcribe_audio(audio_file, translate, model_size, use_diarization)
|
| 74 |
+
|
| 75 |
+
transcription = "Detected language changes:\n\n"
|
| 76 |
+
for segment in language_segments:
|
| 77 |
+
transcription += f"Language: {segment['language']}\n"
|
| 78 |
+
transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
| 79 |
+
|
| 80 |
+
transcription += f"Transcription with language detection and speaker diarization (using {model_size} model):\n\n"
|
| 81 |
+
full_text = ""
|
| 82 |
+
for segment in final_segments:
|
| 83 |
+
transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:\n"
|
| 84 |
+
transcription += f"Original: {segment['text']}\n"
|
| 85 |
+
if translate:
|
| 86 |
+
transcription += f"Translated: {segment['translated']}\n"
|
| 87 |
+
full_text += segment['translated'] + " "
|
| 88 |
+
else:
|
| 89 |
+
full_text += segment['text'] + " "
|
| 90 |
+
transcription += "\n"
|
| 91 |
+
|
| 92 |
+
summary = summarize_text(full_text) if do_summarize else ""
|
| 93 |
+
logger.info("Process and summarize completed successfully")
|
| 94 |
+
return transcription, summary
|
| 95 |
+
except Exception as e:
|
| 96 |
+
logger.error(f"Process and summarize failed: {str(e)}")
|
| 97 |
+
logger.error(traceback.format_exc())
|
| 98 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
| 99 |
|
| 100 |
# Main interface
|
| 101 |
with gr.Blocks() as iface:
|
|
|
|
| 124 |
gr.Markdown(
|
| 125 |
f"""
|
| 126 |
## System Information
|
| 127 |
+
- Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
|
| 128 |
+
- CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
|
| 129 |
|
| 130 |
## ZeroGPU Support
|
| 131 |
This application supports ZeroGPU for Hugging Face Spaces pro users.
|