Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,7 +19,7 @@ logging.basicConfig(
|
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
def load_qa_model():
|
| 22 |
-
"""Load question-answering model with
|
| 23 |
try:
|
| 24 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 25 |
|
|
@@ -27,26 +27,26 @@ def load_qa_model():
|
|
| 27 |
|
| 28 |
# Load tokenizer
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.getenv("HF_TOKEN"))
|
| 30 |
-
tokenizer.model_max_length = 8192 #
|
| 31 |
|
| 32 |
-
# Load the model
|
| 33 |
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
model_id,
|
| 35 |
torch_dtype=torch.bfloat16,
|
| 36 |
device_map="auto",
|
| 37 |
rope_scaling={
|
| 38 |
-
"type": "dynamic", #
|
| 39 |
-
"factor": 8.0
|
| 40 |
},
|
| 41 |
use_auth_token=os.getenv("HF_TOKEN")
|
| 42 |
)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
qa_pipeline = pipeline(
|
| 46 |
"text-generation",
|
| 47 |
model=model,
|
| 48 |
tokenizer=tokenizer,
|
| 49 |
-
max_new_tokens=
|
| 50 |
)
|
| 51 |
|
| 52 |
return qa_pipeline
|
|
@@ -55,6 +55,7 @@ def load_qa_model():
|
|
| 55 |
logger.error(f"Failed to load Q&A model: {str(e)}")
|
| 56 |
return None
|
| 57 |
|
|
|
|
| 58 |
# def load_qa_model():
|
| 59 |
# """Load question-answering model"""
|
| 60 |
# try:
|
|
|
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
def load_qa_model():
|
| 22 |
+
"""Load question-answering model with long context support."""
|
| 23 |
try:
|
| 24 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 25 |
|
|
|
|
| 27 |
|
| 28 |
# Load tokenizer
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.getenv("HF_TOKEN"))
|
| 30 |
+
tokenizer.model_max_length = 8192 # Configure tokenizer for long inputs
|
| 31 |
|
| 32 |
+
# Load the model with simplified rope_scaling configuration
|
| 33 |
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
model_id,
|
| 35 |
torch_dtype=torch.bfloat16,
|
| 36 |
device_map="auto",
|
| 37 |
rope_scaling={
|
| 38 |
+
"type": "dynamic", # Simplified type as expected by the model
|
| 39 |
+
"factor": 8.0 # Scaling factor to support longer contexts
|
| 40 |
},
|
| 41 |
use_auth_token=os.getenv("HF_TOKEN")
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# Initialize the pipeline
|
| 45 |
qa_pipeline = pipeline(
|
| 46 |
"text-generation",
|
| 47 |
model=model,
|
| 48 |
tokenizer=tokenizer,
|
| 49 |
+
max_new_tokens=256, # Limit generation as needed
|
| 50 |
)
|
| 51 |
|
| 52 |
return qa_pipeline
|
|
|
|
| 55 |
logger.error(f"Failed to load Q&A model: {str(e)}")
|
| 56 |
return None
|
| 57 |
|
| 58 |
+
|
| 59 |
# def load_qa_model():
|
| 60 |
# """Load question-answering model"""
|
| 61 |
# try:
|