File size: 8,090 Bytes
b7fabea 54d8c8e b7fabea 54d8c8e b7fabea 54d8c8e b7fabea 54d8c8e b7fabea 54d8c8e b7fabea 54d8c8e fbdc657 54d8c8e fbdc657 54d8c8e fbdc657 54d8c8e 68e6513 54d8c8e 68e6513 54d8c8e fbdc657 3433b65 fbdc657 b7fabea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# ... existing code ...
import pandas as pd
import json
# Load the JSON data
with open('src/combined_data.json') as f:
data = json.load(f)
# Flatten the data
flattened_data = []
for entry in data:
flattened_entry = {
"model_name": entry["model_name"],
"input_price": entry["pricing"]["input_price"],
"output_price": entry["pricing"]["output_price"],
"multimodality_image": entry["multimodality"]["image"],
"multimodality_multiple_image": entry["multimodality"]["multiple_image"],
"multimodality_audio": entry["multimodality"]["audio"],
"multimodality_video": entry["multimodality"]["video"],
"source": entry["pricing"]["source"],
"license_name": entry["license"]["name"],
"license_url": entry["license"]["url"],
"languages": ", ".join(entry["languages"]),
"release_date": entry["release_date"],
"parameter_size": entry["parameters"]["size"],
"estimated": entry["parameters"]["estimated"],
"open_weight": entry["open_weight"],
"context_size": entry["context_size"],
# ... additional prices ...
"additional_prices_context_caching": entry["pricing"].get("additional_prices", {}).get("context_caching", None),
"additional_prices_context_storage": entry["pricing"].get("additional_prices", {}).get("context_storage", None),
"additional_prices_image_input": entry["pricing"].get("additional_prices", {}).get("image_input", None),
"additional_prices_image_output": entry["pricing"].get("additional_prices", {}).get("image_output", None),
"additional_prices_video_input": entry["pricing"].get("additional_prices", {}).get("video_input", None),
"additional_prices_video_output": entry["pricing"].get("additional_prices", {}).get("video_output", None),
"additional_prices_audio_input": entry["pricing"].get("additional_prices", {}).get("audio_input", None),
"additional_prices_audio_output": entry["pricing"].get("additional_prices", {}).get("audio_output", None),
}
flattened_data.append(flattened_entry)
# Create a DataFrame
df = pd.DataFrame(flattened_data)
# Load the results CSV files
results_1_6_5_multimodal = pd.read_csv('src/results_1.6.5_multimodal.csv', header=None)
results_1_6_5_ascii = pd.read_csv('src/results_1.6.5_ascii.csv', header=None)
results_1_6 = pd.read_csv('src/results_1.6.csv', header=None)
# Split model names by '-t0.0' and use the first part
results_1_6_5_multimodal[0] = results_1_6_5_multimodal[0].str.split('-t0.0').str[0]
results_1_6_5_ascii[0] = results_1_6_5_ascii[0].str.split('-t0.0').str[0]
results_1_6[0] = results_1_6[0].str.split('-t0.0').str[0]
# Create a mapping for clemscore values
clemscore_map_1_6_5_multimodal = dict(zip(results_1_6_5_multimodal[0], results_1_6_5_multimodal[1]))
clemscore_map_1_6_5_ascii = dict(zip(results_1_6_5_ascii[0], results_1_6_5_ascii[1]))
clemscore_map_1_6 = dict(zip(results_1_6[0], results_1_6[1]))
# Add clemscore columns to the main DataFrame
df['clemscore_v1.6.5_multimodal'] = df['model_name'].map(clemscore_map_1_6_5_multimodal).fillna(0).astype(float)
df['clemscore_v1.6.5_ascii'] = df['model_name'].map(clemscore_map_1_6_5_ascii).fillna(0).astype(float)
df['clemscore_v1.6'] = df['model_name'].map(clemscore_map_1_6).fillna(0).astype(float)
# Load the latency CSV files
latency_1_6 = pd.read_csv('src/v1.6_latency.csv', header=None)
latency_1_6_5_ascii = pd.read_csv('src/v1.6.5_ascii_latency.csv', header=None)
latency_1_6_5_multimodal = pd.read_csv('src/v1.6.5_multimodal_latency.csv', header=None)
# Create a mapping for latency values
latency_map_1_6 = dict(zip(latency_1_6[0], latency_1_6[1]))
latency_map_1_6_5_ascii = dict(zip(latency_1_6_5_ascii[0], latency_1_6_5_ascii[1]))
latency_map_1_6_5_multimodal = dict(zip(latency_1_6_5_multimodal[0], latency_1_6_5_multimodal[1]))
# Add latency columns to the main DataFrame
df['latency_v1.6'] = df['model_name'].map(latency_map_1_6).fillna(0).astype(float)
df['latency_v1.6.5_multimodal'] = df['model_name'].map(latency_map_1_6_5_multimodal).fillna(0).astype(float)
df['latency_v1.6.5_ascii'] = df['model_name'].map(latency_map_1_6_5_ascii).fillna(0).astype(float)
# Calculate average latency and clemscore
df['average_clemscore'] = df[['clemscore_v1.6.5_multimodal', 'clemscore_v1.6.5_ascii', 'clemscore_v1.6']].mean(axis=1).round(3)
df['average_latency'] = df[['latency_v1.6', 'latency_v1.6.5_multimodal', 'latency_v1.6.5_ascii']].mean(axis=1).round(3)
# More clean up
# Clean and convert prices to float
df['input_price'] = df['input_price'].replace({'\$': '', '': None}, regex=True).astype(float).round(3)
df['output_price'] = df['output_price'].replace({'\$': '', '': None}, regex=True).astype(float).round(3)
# Clean and convert additional prices to float
additional_price_columns = [
'additional_prices_context_caching',
'additional_prices_context_storage',
'additional_prices_image_input',
'additional_prices_image_output',
'additional_prices_video_input',
'additional_prices_video_output',
'additional_prices_audio_input',
'additional_prices_audio_output'
]
for col in additional_price_columns:
df[col] = df[col].replace({'\$': '', '': None}, regex=True).astype(float).round(3)
# Clean and convert context to integer
df['context_size'] = df['context_size'].replace({'k': ''}, regex=True).astype(int)
df['context_size'] = df['context_size']*1024
df['parameter_size'] = df['parameter_size'].replace({'B': '', '': None}, regex=True).astype(float)
LANG_MAPPING = {
'el': 'Greek',
'id': 'Indonesian',
'ko': 'Korean',
'sv': 'Swedish',
'de': 'German',
'lv': 'Latvian',
'am': 'Amharic',
'fi': 'Finnish',
'da': 'Danish',
'pt': 'Portuguese',
'sw': 'Swahili',
'es': 'Spanish',
'it': 'Italian',
'bn': 'Bengali',
'nl': 'Dutch',
'lt': 'Lithuanian',
'ro': 'Romanian',
'sl': 'Slovenian',
'hu': 'Hungarian',
'hr': 'Croatian',
'vi': 'Vietnamese',
'hi': 'Hindi',
'zh': 'Chinese',
'pl': 'Polish',
'ar': 'Arabic',
'cs': 'Czech',
'sk': 'Slovak',
'ja': 'Japanese',
'no': 'Norwegian',
'uk': 'Ukrainian',
'fr': 'French',
'et': 'Estonian',
'ru': 'Russian',
'th': 'Thai',
'bg': 'Bulgarian',
'tr': 'Turkish',
'ms': 'Malay',
'he': 'Hebrew',
'tl': 'Tagalog',
'sr': 'Serbian',
'en': 'English'
}
df['languages'] = df['languages'].apply(lambda x: ', '.join([LANG_MAPPING.get(lang, lang) for lang in x.split(', ')]))
# Keep only the specified columns
df = df[[
'model_name',
'input_price',
'output_price',
'multimodality_image',
'multimodality_multiple_image',
'multimodality_audio',
'multimodality_video',
'source',
'license_name',
'license_url',
'languages',
'release_date',
'open_weight',
'context_size',
'average_clemscore',
'average_latency',
'parameter_size',
'estimated'
]]
df = df.rename(columns={
'model_name': 'Model Name',
'input_price': 'Input $/1M',
'output_price': 'Output $/1M',
'multimodality_image': 'Multimodality Image',
'multimodality_multiple_image': 'Multimodality Multiple Image',
'multimodality_audio': 'Multimodality Audio',
'multimodality_video': 'Multimodality Video',
'source': 'Source',
'license_name': 'License Name',
'license_url': 'License',
'languages': 'Languages',
'release_date': 'Release Date',
'open_weight': 'Open Weight',
'context_size': 'Context Size',
'average_clemscore': 'Average Clemscore',
'average_latency': 'Average Latency (s)',
'parameter_size': 'Parameter Size (B)',
'estimated': 'Estimated'
})
df['License'] = df.apply(lambda row: f'<a href="{row["License"]}" style="color: blue;">{row["License Name"]}</a>', axis=1)
df['Model Name'] = df.apply(lambda row: f'<a href="{row["Source"]}" style="color: blue;">{row["Model Name"]}</a>', axis=1)
df['Temp Date'] = df['Release Date']
print(df)
# Save to CSV
df.to_csv('src/main_df.csv', index=False)
|