File size: 8,090 Bytes
b7fabea
 
 
 
 
 
 
 
 
 
 
 
 
54d8c8e
 
b7fabea
 
 
 
54d8c8e
 
 
b7fabea
 
54d8c8e
 
b7fabea
54d8c8e
 
b7fabea
54d8c8e
 
 
 
 
 
 
 
b7fabea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbdc657
 
54d8c8e
 
 
 
fbdc657
 
54d8c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
fbdc657
54d8c8e
 
 
 
68e6513
 
54d8c8e
 
68e6513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbdc657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3433b65
fbdc657
b7fabea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# ... existing code ...
import pandas as pd
import json

# Load the JSON data
with open('src/combined_data.json') as f:
    data = json.load(f)

# Flatten the data
flattened_data = []
for entry in data:
    flattened_entry = {
        "model_name": entry["model_name"],
        "input_price": entry["pricing"]["input_price"],
        "output_price": entry["pricing"]["output_price"],
        "multimodality_image": entry["multimodality"]["image"],
        "multimodality_multiple_image": entry["multimodality"]["multiple_image"],
        "multimodality_audio": entry["multimodality"]["audio"],
        "multimodality_video": entry["multimodality"]["video"],
        "source": entry["pricing"]["source"],
        "license_name": entry["license"]["name"],
        "license_url": entry["license"]["url"],
        "languages": ", ".join(entry["languages"]),
        "release_date": entry["release_date"],
        "parameter_size": entry["parameters"]["size"],
        "estimated": entry["parameters"]["estimated"],
        "open_weight": entry["open_weight"],
        "context_size": entry["context_size"],

        # ... additional prices ...
        "additional_prices_context_caching": entry["pricing"].get("additional_prices", {}).get("context_caching", None),
        "additional_prices_context_storage": entry["pricing"].get("additional_prices", {}).get("context_storage", None),
        "additional_prices_image_input": entry["pricing"].get("additional_prices", {}).get("image_input", None),
        "additional_prices_image_output": entry["pricing"].get("additional_prices", {}).get("image_output", None),
        "additional_prices_video_input": entry["pricing"].get("additional_prices", {}).get("video_input", None),
        "additional_prices_video_output": entry["pricing"].get("additional_prices", {}).get("video_output", None),
        "additional_prices_audio_input": entry["pricing"].get("additional_prices", {}).get("audio_input", None),
        "additional_prices_audio_output": entry["pricing"].get("additional_prices", {}).get("audio_output", None),
    }
    flattened_data.append(flattened_entry)

# Create a DataFrame
df = pd.DataFrame(flattened_data)

# Load the results CSV files
results_1_6_5_multimodal = pd.read_csv('src/results_1.6.5_multimodal.csv', header=None)
results_1_6_5_ascii = pd.read_csv('src/results_1.6.5_ascii.csv', header=None)
results_1_6 = pd.read_csv('src/results_1.6.csv', header=None)

# Split model names by '-t0.0' and use the first part
results_1_6_5_multimodal[0] = results_1_6_5_multimodal[0].str.split('-t0.0').str[0]
results_1_6_5_ascii[0] = results_1_6_5_ascii[0].str.split('-t0.0').str[0]
results_1_6[0] = results_1_6[0].str.split('-t0.0').str[0]


# Create a mapping for clemscore values
clemscore_map_1_6_5_multimodal = dict(zip(results_1_6_5_multimodal[0], results_1_6_5_multimodal[1]))
clemscore_map_1_6_5_ascii = dict(zip(results_1_6_5_ascii[0], results_1_6_5_ascii[1]))
clemscore_map_1_6 = dict(zip(results_1_6[0], results_1_6[1]))


# Add clemscore columns to the main DataFrame
df['clemscore_v1.6.5_multimodal'] = df['model_name'].map(clemscore_map_1_6_5_multimodal).fillna(0).astype(float)
df['clemscore_v1.6.5_ascii'] = df['model_name'].map(clemscore_map_1_6_5_ascii).fillna(0).astype(float)
df['clemscore_v1.6'] = df['model_name'].map(clemscore_map_1_6).fillna(0).astype(float)

# Load the latency CSV files
latency_1_6 = pd.read_csv('src/v1.6_latency.csv', header=None)
latency_1_6_5_ascii = pd.read_csv('src/v1.6.5_ascii_latency.csv', header=None)
latency_1_6_5_multimodal = pd.read_csv('src/v1.6.5_multimodal_latency.csv', header=None)

# Create a mapping for latency values
latency_map_1_6 = dict(zip(latency_1_6[0], latency_1_6[1]))
latency_map_1_6_5_ascii = dict(zip(latency_1_6_5_ascii[0], latency_1_6_5_ascii[1]))
latency_map_1_6_5_multimodal = dict(zip(latency_1_6_5_multimodal[0], latency_1_6_5_multimodal[1]))

# Add latency columns to the main DataFrame
df['latency_v1.6'] = df['model_name'].map(latency_map_1_6).fillna(0).astype(float)
df['latency_v1.6.5_multimodal'] = df['model_name'].map(latency_map_1_6_5_multimodal).fillna(0).astype(float)
df['latency_v1.6.5_ascii'] = df['model_name'].map(latency_map_1_6_5_ascii).fillna(0).astype(float)


# Calculate average latency and clemscore
df['average_clemscore'] = df[['clemscore_v1.6.5_multimodal', 'clemscore_v1.6.5_ascii', 'clemscore_v1.6']].mean(axis=1).round(3)
df['average_latency'] = df[['latency_v1.6', 'latency_v1.6.5_multimodal', 'latency_v1.6.5_ascii']].mean(axis=1).round(3)


# More clean up
# Clean and convert prices to float
df['input_price'] = df['input_price'].replace({'\$': '', '': None}, regex=True).astype(float).round(3)
df['output_price'] = df['output_price'].replace({'\$': '', '': None}, regex=True).astype(float).round(3)

# Clean and convert additional prices to float
additional_price_columns = [
    'additional_prices_context_caching',
    'additional_prices_context_storage',
    'additional_prices_image_input',
    'additional_prices_image_output',
    'additional_prices_video_input',
    'additional_prices_video_output',
    'additional_prices_audio_input',
    'additional_prices_audio_output'
]

for col in additional_price_columns:
    df[col] = df[col].replace({'\$': '', '': None}, regex=True).astype(float).round(3)

# Clean and convert context to integer
df['context_size'] = df['context_size'].replace({'k': ''}, regex=True).astype(int)

df['context_size'] = df['context_size']*1024

df['parameter_size'] = df['parameter_size'].replace({'B': '', '': None}, regex=True).astype(float)

LANG_MAPPING = {
    'el': 'Greek',
    'id': 'Indonesian',
    'ko': 'Korean',
    'sv': 'Swedish',
    'de': 'German',
    'lv': 'Latvian',
    'am': 'Amharic',
    'fi': 'Finnish',
    'da': 'Danish',
    'pt': 'Portuguese',
    'sw': 'Swahili',
    'es': 'Spanish',
    'it': 'Italian',
    'bn': 'Bengali',
    'nl': 'Dutch',
    'lt': 'Lithuanian',
    'ro': 'Romanian',
    'sl': 'Slovenian',
    'hu': 'Hungarian',
    'hr': 'Croatian',
    'vi': 'Vietnamese',
    'hi': 'Hindi',
    'zh': 'Chinese',
    'pl': 'Polish',
    'ar': 'Arabic',
    'cs': 'Czech',
    'sk': 'Slovak',
    'ja': 'Japanese',
    'no': 'Norwegian',
    'uk': 'Ukrainian',
    'fr': 'French',
    'et': 'Estonian',
    'ru': 'Russian',
    'th': 'Thai',
    'bg': 'Bulgarian',
    'tr': 'Turkish',
    'ms': 'Malay',
    'he': 'Hebrew',
    'tl': 'Tagalog',
    'sr': 'Serbian',
    'en': 'English'
}

df['languages'] = df['languages'].apply(lambda x: ', '.join([LANG_MAPPING.get(lang, lang) for lang in x.split(', ')]))

# Keep only the specified columns
df = df[[
    'model_name', 
    'input_price', 
    'output_price',
    'multimodality_image',
    'multimodality_multiple_image',
    'multimodality_audio',
    'multimodality_video',
    'source',
    'license_name',
    'license_url',
    'languages',
    'release_date', 
    'open_weight',
    'context_size', 
    'average_clemscore',
    'average_latency',
    'parameter_size',
    'estimated'
]]

df = df.rename(columns={
    'model_name': 'Model Name',
    'input_price': 'Input $/1M',
    'output_price': 'Output $/1M',
    'multimodality_image': 'Multimodality Image',
    'multimodality_multiple_image': 'Multimodality Multiple Image',
    'multimodality_audio': 'Multimodality Audio',
    'multimodality_video': 'Multimodality Video',
    'source': 'Source',
    'license_name': 'License Name',
    'license_url': 'License',
    'languages': 'Languages',
    'release_date': 'Release Date', 
    'open_weight': 'Open Weight',
    'context_size': 'Context Size', 
    'average_clemscore': 'Average Clemscore',
    'average_latency': 'Average Latency (s)',
    'parameter_size': 'Parameter Size (B)',
    'estimated': 'Estimated'
})

df['License'] = df.apply(lambda row: f'<a href="{row["License"]}" style="color: blue;">{row["License Name"]}</a>', axis=1)
df['Model Name'] = df.apply(lambda row: f'<a href="{row["Source"]}" style="color: blue;">{row["Model Name"]}</a>', axis=1)
df['Temp Date'] = df['Release Date']
print(df)
# Save to CSV
df.to_csv('src/main_df.csv', index=False)