File size: 1,289 Bytes
d8f251a b7fabea d8f251a b7fabea d8f251a b7fabea d8f251a b7fabea 925ac7f d8f251a b7fabea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import pandas as pd
import requests
import os
def fetch_prices():
# Fetch the JSON data from the URL
url = "https://llm-price.huhuhang.workers.dev/"
response = requests.get(url)
# Check if the request was successful
if response.status_code == 200:
data = response.json()
# Extract relevant information
extracted_data = []
for entry in data:
extracted_info = {
"model_name": entry["fields"]["model_name"],
"provider": entry["fields"]["provider"],
"input_tokens": entry["fields"]["input_tokens"],
"output_tokens": entry["fields"]["output_tokens"],
"url": entry["fields"]["url"],
"update_time": entry["fields"]["update_time"]
}
extracted_data.append(extracted_info)
# Create a DataFrame from the extracted data
df = pd.DataFrame(extracted_data)
save_path = os.path.join('src', 'prices.csv')
df.to_csv(save_path, index=False) # Save the DataFrame as a CSV file
print(f"Saved the Prices as a CSV under {save_path}")
else:
print(f"Failed to retrieve data: {response.status_code}")
return None
if __name__ == '__main__':
fetch_prices() |