File size: 1,289 Bytes
d8f251a
 
b7fabea
d8f251a
 
 
 
 
 
 
 
 
 
 
 
 
 
b7fabea
d8f251a
b7fabea
 
d8f251a
 
 
 
 
 
b7fabea
 
 
925ac7f
d8f251a
b7fabea
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd  
import requests
import os

def fetch_prices():
    # Fetch the JSON data from the URL
    url = "https://llm-price.huhuhang.workers.dev/"
    response = requests.get(url)

    # Check if the request was successful
    if response.status_code == 200:
        data = response.json()
        # Extract relevant information
        extracted_data = []
        for entry in data:
            extracted_info = {
                "model_name": entry["fields"]["model_name"],
                "provider": entry["fields"]["provider"],
                "input_tokens": entry["fields"]["input_tokens"],
                "output_tokens": entry["fields"]["output_tokens"],
                "url": entry["fields"]["url"],
                "update_time": entry["fields"]["update_time"]
            }
            extracted_data.append(extracted_info)

        # Create a DataFrame from the extracted data
        df = pd.DataFrame(extracted_data)
        save_path = os.path.join('src', 'prices.csv')
        df.to_csv(save_path, index=False)  # Save the DataFrame as a CSV file
        print(f"Saved the Prices as a CSV under {save_path}")
    else:
        print(f"Failed to retrieve data: {response.status_code}")
        return None  
    
if __name__ == '__main__':
    fetch_prices()