Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pymssql
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.llms import OpenAI
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
from langchain.document_loaders import TextLoader
|
14 |
+
from langchain.document_loaders import DirectoryLoader
|
15 |
+
from langchain.document_loaders import CSVLoader
|
16 |
+
from langchain.memory import ConversationBufferMemory
|
17 |
+
|
18 |
+
def Loading():
|
19 |
+
return "๋ฐ์ดํฐ ๋ก๋ฉ ์ค..."
|
20 |
+
|
21 |
+
def LoadData(openai_key):
|
22 |
+
|
23 |
+
if openai_key is not None:
|
24 |
+
|
25 |
+
persist_directory = 'realdb_LLM'
|
26 |
+
|
27 |
+
embedding = OpenAIEmbeddings()
|
28 |
+
|
29 |
+
vectordb = Chroma(
|
30 |
+
persist_directory=persist_directory,
|
31 |
+
embedding_function=embedding
|
32 |
+
)
|
33 |
+
|
34 |
+
global retriever
|
35 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 1})
|
36 |
+
|
37 |
+
return "์ค๋น ์๋ฃ"
|
38 |
+
else:
|
39 |
+
return "์ฌ์ฉํ์๋ API Key๋ฅผ ์
๋ ฅํ์ฌ ์ฃผ์๊ธฐ ๋ฐ๋๋๋ค."
|
40 |
+
|
41 |
+
def process_llm_response(llm_response):
|
42 |
+
print(llm_response['result'])
|
43 |
+
print('\n\nSources:')
|
44 |
+
for source in llm_response["source_documents"]:
|
45 |
+
print(source.metadata['source'])
|
46 |
+
|
47 |
+
|
48 |
+
# ์ฑ๋ด์ ๋ต๋ณ์ ์ฒ๋ฆฌํ๋ ํจ์
|
49 |
+
def respond(message, chat_history, temperature):
|
50 |
+
try:
|
51 |
+
qa_chain = RetrievalQA.from_chain_type(
|
52 |
+
llm=OpenAI(temperature=0.4),
|
53 |
+
# llm=OpenAI(temperature=0.4),
|
54 |
+
# llm=ChatOpenAI(temperature=0),
|
55 |
+
chain_type="stuff",
|
56 |
+
retriever=retriever
|
57 |
+
)
|
58 |
+
|
59 |
+
result = qa_chain(message)
|
60 |
+
|
61 |
+
bot_message = result['result']
|
62 |
+
|
63 |
+
# bot_message += '\n\n' + ' [์ถ์ฒ]'
|
64 |
+
|
65 |
+
# # ๋ต๋ณ์ ์ถ์ฒ๋ฅผ ํ๊ธฐ
|
66 |
+
# for i, doc in enumerate(result['source_documents']):
|
67 |
+
# bot_message += str(i+1) + '. ' + doc.metadata['source'] + ' '
|
68 |
+
|
69 |
+
# ์ฑํ
๊ธฐ๋ก์ ์ฌ์ฉ์์ ๋ฉ์์ง์ ๋ด์ ์๋ต์ ์ถ๊ฐ.
|
70 |
+
chat_history.append((message, bot_message))
|
71 |
+
|
72 |
+
return "", chat_history
|
73 |
+
except:
|
74 |
+
chat_history.append(("", "API Key ์
๋ ฅ ์๋ง"))
|
75 |
+
|
76 |
+
return " ", chat_history
|
77 |
+
|
78 |
+
# return "", chat_history
|
79 |
+
|
80 |
+
|
81 |
+
import gradio as gr
|
82 |
+
|
83 |
+
# ์ฑ๋ด ์ค๋ช
|
84 |
+
title = """
|
85 |
+
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
86 |
+
<div>
|
87 |
+
<h1>Pretraining Chatbot V2 Real</h1>
|
88 |
+
</div>
|
89 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
90 |
+
OpenAI LLM๋ฅผ ์ด์ฉํ Chatbot (Similarity)
|
91 |
+
</p>
|
92 |
+
</div>
|
93 |
+
"""
|
94 |
+
|
95 |
+
# ๊พธ๋ฏธ๊ธฐ
|
96 |
+
css="""
|
97 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
98 |
+
"""
|
99 |
+
with gr.Blocks(css=css) as UnivChatbot:
|
100 |
+
with gr.Column(elem_id="col-container"):
|
101 |
+
gr.HTML(title)
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column(scale=3):
|
105 |
+
openai_key = gr.Textbox(label="You OpenAI API key", type="password", placeholder="OpenAI Key Type", elem_id="InputKey", show_label=False, container=False)
|
106 |
+
with gr.Column(scale=1):
|
107 |
+
langchain_status = gr.Textbox(placeholder="Status", interactive=False, show_label=False, container=False)
|
108 |
+
with gr.Column(scale=1):
|
109 |
+
chk_key = gr.Button("ํ์ธ", variant="primary")
|
110 |
+
|
111 |
+
chatbot = gr.Chatbot(label="๋ํ ์ฑ๋ด์์คํ
(OpenAI LLM)", elem_id="chatbot") # ์๋จ ์ข์ธก
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column(scale=9):
|
115 |
+
msg = gr.Textbox(label="์
๋ ฅ", placeholder="๊ถ๊ธํ์ ๋ด์ญ์ ์
๋ ฅํ์ฌ ์ฃผ์ธ์.", elem_id="InputQuery", show_label=False, container=False)
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column(scale=1):
|
119 |
+
submit = gr.Button("์ ์ก", variant="primary")
|
120 |
+
with gr.Column(scale=1):
|
121 |
+
clear = gr.Button("์ด๊ธฐํ", variant="stop")
|
122 |
+
|
123 |
+
#chk_key.click(Loading, None, langchain_status, queue=False)
|
124 |
+
chk_key.click(LoadData, openai_key, outputs=[langchain_status], queue=False)
|
125 |
+
|
126 |
+
# ์ฌ์ฉ์์ ์
๋ ฅ์ ์ ์ถ(submit)ํ๋ฉด respond ํจ์๊ฐ ํธ์ถ.
|
127 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
128 |
+
|
129 |
+
submit.click(respond, [msg, chatbot], [msg, chatbot])
|
130 |
+
|
131 |
+
# '์ด๊ธฐํ' ๋ฒํผ์ ํด๋ฆญํ๋ฉด ์ฑํ
๊ธฐ๋ก์ ์ด๊ธฐํ.
|
132 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
133 |
+
|
134 |
+
|
135 |
+
UnivChatbot.launch()
|