File size: 5,487 Bytes
f5b8ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ea151
 
f5b8ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ea151
f5b8ca4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import pymssql
import pandas as pd

# os.environ["OPENAI_API_KEY"] = "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"
os.environ["OPENAI_API_KEY"] = "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"

from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import CSVLoader
from langchain.memory import ConversationBufferMemory

# # ์‚ฌ์šฉ์ž๊ฐ€ ์งˆ๋ฌธํ•œ ๋‚ด์—ญ ์ €์žฅํ•ด์„œ ๋‚˜์ค‘์— ํ•™์Šต์šฉ์œผ๋กœ ์“ฐ๊ธฐ ์œ„ํ•ด DB ์ ‘์†
# # MSSQL ์ ‘์†
# conn = pymssql.connect(host=r"(local)", database='Chatbot_Manage')
# conn.autocommit(True) # ์˜คํ†  ์ปค๋ฐ‹ ํ™œ์„ฑํ™”
# # Connection ์œผ๋กœ๋ถ€ํ„ฐ Cursor ์ƒ์„ฑ
# _cursor = conn.cursor()
# _cursorConfig = conn.cursor()

# # _query = "SELECT UserInput as query, SystemAnswer as answer FROM ChatHistory WHERE AcceptFlag = 'Y'"
# _queryConfig = "SELECT Temperature FROM ChatConfig WHERE IsUse = 1"

# # _cursor.execute(_query)
# _cursorConfig.execute(_queryConfig)


# #์‹คํ–‰ํ•œ ๊ฐ’, ์ด๋ฆ„ ๊ฐ’์„ DataFrame์— ์ €์žฅ
# #dfsql = ['query','answer'] #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ปฌ๋Ÿผ์— ์ด๋ฆ„ ์„ค์ •.
# # _row = cursor.fetchall()
# # df1 = pd.DataFrame(_row, columns=dfsql)

# _rowConfing = _cursorConfig.fetchone()

# while _rowConfing:
#     for col in range(len(_rowConfing)):
#         temperature = _rowConfing[col]
#         _rowConfing = _cursorConfig.fetchone()

# conn.close()    ## ์—ฐ๊ฒฐ ๋Š๊ธฐ

persist_directory = 'realdb_LLM'

embedding = OpenAIEmbeddings()

vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embedding
)

retriever = vectordb.as_retriever(search_kwargs={"k": 1})


def process_llm_response(llm_response):
    print(llm_response['result'])
    print('\n\nSources:')
    for source in llm_response["source_documents"]:
        print(source.metadata['source'])
        
        
# ์ฑ—๋ด‡์˜ ๋‹ต๋ณ€์„ ์ฒ˜๋ฆฌํ•˜๋Š” ํ•จ์ˆ˜
def respond(message, chat_history, temperature):
    
    qa_chain = RetrievalQA.from_chain_type(
        llm=OpenAI(temperature=0.4),
        # llm=OpenAI(temperature=0.4), 
        # llm=ChatOpenAI(temperature=0),
        chain_type="stuff", 
        retriever=retriever
    )

    result = qa_chain(message)
    
    bot_message = result['result']

    # bot_message += '\n\n' + ' [์ถœ์ฒ˜]'

    # # ๋‹ต๋ณ€์˜ ์ถœ์ฒ˜๋ฅผ ํ‘œ๊ธฐ
    # for i, doc in enumerate(result['source_documents']):
    #     bot_message += str(i+1) + '. ' + doc.metadata['source'] + ' '

    # ์ฑ„ํŒ… ๊ธฐ๋ก์— ์‚ฌ์šฉ์ž์˜ ๋ฉ”์‹œ์ง€์™€ ๋ด‡์˜ ์‘๋‹ต์„ ์ถ”๊ฐ€.
    chat_history.append((message, bot_message))
    
    historySave(message=message, answer=str(result['result']).replace("'",""))
    # historySave(message=message, answer="")

    return "", chat_history

def historySave(message, answer):

    conn = pymssql.connect(host=r"(local)", database='Chatbot_Manage', charset='utf8')
    conn.autocommit(True) # ์˜คํ†  ์ปค๋ฐ‹ ํ™œ์„ฑํ™”
    # Connection ์œผ๋กœ๋ถ€ํ„ฐ Cursor ์ƒ์„ฑ
    cursor = conn.cursor()

    SystemType = "OpenAI(Real LLM)"
    
    # SQL๋ฌธ ์‹คํ–‰'
    _sql = "EXEC ChatHistory_InsUpd '" + SystemType + "','" + message + "', '" + answer + "'"
    cursor.execute(_sql)
    
    conn.close()    ## ์—ฐ๊ฒฐ ๋Š๊ธฐ
    
import gradio as gr

# ์ฑ—๋ด‡ ์„ค๋ช…
title = """
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
    <div>
        <h1>Pretraining Chatbot V2 Real</h1>
    </div>
    <p style="margin-bottom: 10px; font-size: 94%">
        OpenAI LLM๋ฅผ ์ด์šฉํ•œ Chatbot (Similarity)
    </p>
</div>
"""

# ๊พธ๋ฏธ๊ธฐ
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
with gr.Blocks(css=css) as UnivChatbot:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)

        # with gr.Row():
        #     with gr.Column(scale=3):
        #         openai_key = gr.Textbox(label="You OpenAI API key", type="password", placeholder="OpenAI Key Type", elem_id="InputKey", show_label=False, container=False)
        #     with gr.Column(scale=1):
        #         langchain_status = gr.Textbox(placeholder="Status", interactive=False, show_label=False, container=False)
        #     with gr.Column(scale=1):
        #         chk_key = gr.Button("ํ™•์ธ", variant="primary")
                
        chatbot = gr.Chatbot(label="๋Œ€ํ•™ ์ฑ—๋ด‡์‹œ์Šคํ…œ(OpenAI LLM)", elem_id="chatbot") # ์ƒ๋‹จ ์ขŒ์ธก 

        with gr.Row():
            with gr.Column(scale=9):
                msg = gr.Textbox(label="์ž…๋ ฅ", placeholder="๊ถ๊ธˆํ•˜์‹  ๋‚ด์—ญ์„ ์ž…๋ ฅํ•˜์—ฌ ์ฃผ์„ธ์š”.", elem_id="InputQuery", show_label=False, container=False)
            
        with gr.Row():
            with gr.Column(scale=1):
                submit = gr.Button("์ „์†ก", variant="primary")
            with gr.Column(scale=1):
                clear = gr.Button("์ดˆ๊ธฐํ™”", variant="stop")

    # ์‚ฌ์šฉ์ž์˜ ์ž…๋ ฅ์„ ์ œ์ถœ(submit)ํ•˜๋ฉด respond ํ•จ์ˆ˜๊ฐ€ ํ˜ธ์ถœ.
    msg.submit(respond, [msg, chatbot], [msg, chatbot])

    submit.click(respond, [msg, chatbot], [msg, chatbot])

    # '์ดˆ๊ธฐํ™”' ๋ฒ„ํŠผ์„ ํด๋ฆญํ•˜๋ฉด ์ฑ„ํŒ… ๊ธฐ๋ก์„ ์ดˆ๊ธฐํ™”.
    clear.click(lambda: None, None, chatbot, queue=False)

  
UnivChatbot.launch(server_port=60001)