File size: 7,174 Bytes
0157c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import torch
from transformers import TableTransformerForObjectDetection
import matplotlib.pyplot as plt
from transformers import DetrFeatureExtractor
import pandas as pd
import uuid
from surya.ocr import run_ocr
# from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from PIL import ImageDraw, Image
import os
from pdf2image import convert_from_path
import tempfile
from ultralyticsplus import YOLO, render_result
import cv2
import numpy as np
from fpdf import FPDF

def convert_pdf_images(pdf_path):
    # Convert PDF to images
    images = convert_from_path(pdf_path)

    # Save each page as a temporary image and collect file paths
    temp_file_paths = []
    for i, page in enumerate(images):
        # Create a temporary file with a unique name
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        page.save(temp_file.name, 'PNG')  # Save the image to the temporary file
        temp_file_paths.append(temp_file.name)  # Add file path to the list

    return temp_file_paths[0]  # Return the list of temporary file paths


# Load model
model_yolo = YOLO('keremberke/yolov8m-table-extraction')

# Set model parameters
model_yolo.overrides['conf'] = 0.25  # NMS confidence threshold
model_yolo.overrides['iou'] = 0.45  # NMS IoU threshold
model_yolo.overrides['agnostic_nms'] = False  # NMS class-agnostic
model_yolo.overrides['max_det'] = 1000  # maximum number of detections per image

# new v1.1 checkpoints require no timm anymore
device = "cuda" if torch.cuda.is_available() else "cpu"
langs = ["en","th"] # Replace with your languages - optional but recommended
det_processor, det_model = load_det_processor(), load_det_model()
rec_model, rec_processor = load_rec_model(), load_rec_processor()


feature_extractor = DetrFeatureExtractor()

model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")

def crop_table(filename):
    # Set image
    image_path = filename
    image = Image.open(image_path)
    image_np = np.array(image)

    # Perform inference
    results = model_yolo.predict(image_path)

    # Extract the first bounding box (assuming there's only one table)
    bbox = results[0].boxes[0]
    x1, y1, x2, y2 = map(int, bbox.xyxy[0])  # Get the bounding box coordinates

    # Crop the image using the bounding box coordinates
    cropped_image = image_np[y1:y2, x1:x2]

    # Convert the cropped image to RGB (if it's not already in RGB)
    cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)

    # Save the cropped image as a PDF
    cropped_image_pil = Image.fromarray(cropped_image_rgb)
    # Save the cropped image to a temporary file
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
    cropped_image_pil.save(temp_file.name)

    return temp_file.name

def extract_table(image_path):
    image = Image.open(image_path)
    predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor)
    objs = []
    for t in predictions[0].text_lines:
      objs.append([t.polygon,t.confidence,t.text,t.bbox])
    # Sort objects by their y-coordinate to facilitate row separation
    objs = sorted(objs, key=lambda x: x[3][1])

    # Initialize lists to store rows and column boundaries
    rows = []
    row_threshold = 5  # Adjust as needed to separate rows based on y-coordinates
    column_boundaries = []

    # First pass to determine approximate column boundaries based on x-coordinates
    for obj in objs:
        x_min = obj[3][0]  # x-coordinate of the left side of the bounding box
        if not any(abs(x - x_min) < 10 for x in column_boundaries):
            column_boundaries.append(x_min)

    # Sort column boundaries to ensure proper left-to-right order
    column_boundaries.sort()

    # Second pass to organize text by rows and columns
    current_row = []
    previous_y = None

    for obj in objs:
        bbox = obj[3]
        text = obj[2]

        # Check if the current item belongs to a new row based on y-coordinate
        if previous_y is None or abs(bbox[1] - previous_y) > row_threshold:
            # Add the completed row to the list if it's not empty
            if current_row:
                rows.append(current_row)
            current_row = [''] * len(column_boundaries)  # Initialize new row with placeholders

        # Find the appropriate column for the current text based on x-coordinate
        for col_index, x_bound in enumerate(column_boundaries):
            if abs(bbox[0] - x_bound) < 10:  # Adjust threshold as necessary
                current_row[col_index] = text

                break

        previous_y = bbox[1]

    # Add the last row if it's not empty
    if current_row:
        rows.append(current_row)

    # Create DataFrame from rows
    df = pd.DataFrame(rows)
    df.columns = df.iloc[0]
    df = df.iloc[1:]
    # Save DataFrame to an CSV file
    csv_path = f'{uuid.uuid4()}.csv'

    df.to_csv(csv_path,index=False)

    # Save table_with_bbox_path
    table_with_bbox_path = f"{uuid.uuid4()}.png"

    for obj in objs:
      # draw bbox on image
      draw = ImageDraw.Draw(image)
      draw.rectangle(obj[3], outline='red', width=1)
    image.save(table_with_bbox_path)

    return csv_path,table_with_bbox_path



# Function to process the uploaded file
def process_file(uploaded_file):
    images_table = convert_pdf_images(uploaded_file)
    croped_table = crop_table(images_table)

    filepath,bbox_table= extract_table(croped_table)

    os.remove(images_table)
    os.remove(croped_table)
    return filepath, bbox_table  # Return the file path for download

# Function to clear the inputs and outputs
def clear_inputs():
    return None, None, None  # Clear both input and output

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Upload a PDF, Process it, and Download the Processed File")

    with gr.Row():
        upload = gr.File(label="Upload PDF", type="filepath", file_types=[".pdf"])
        download = gr.File(label="Download Processed PDF")
    with gr.Row():
        process_button = gr.Button("Process")
        clear_button = gr.Button("Clear")  # Custom clear button
    image_display = gr.Image(label="Processed Image")

    # Trigger the file processing with the button click
    process_button.click(process_file, inputs=upload, outputs=[download, image_display])

    # Trigger clearing inputs and outputs
    clear_button.click(clear_inputs, inputs=None, outputs=[upload, download, image_display])

# Launch the interface
demo.launch()

# print(process_file("/content/ขอ ตารางกริยาช่องที่ 1 ในภาษาไทย (กริยาคำกริยา) ซ... - ขอ ตารางกริยาช่องที่ 1 ในภาษาไทย (กริย.pdf"))