Spaces:
Running
Running
File size: 2,636 Bytes
71c801a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import streamlit as st
from bs4 import BeautifulSoup
import requests
from groq import Groq
# Define the Website class
class Website:
def __init__(self, url):
self.url = url
try:
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
self.title = soup.title.string if soup.title else "No title found"
for irrelevant in soup.body(["script", "style", "img", "input"]):
irrelevant.decompose()
self.text = soup.body.get_text(separator="\n", strip=True)
except Exception as e:
self.title = "Error loading page"
self.text = str(e)
# Initialize Groq client
api_key = "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"
client = Groq(api_key=api_key)
# Streamlit UI
st.title("Welcome to WebBot")
st.write("Enter a website URL and ask questions about its content!")
# Input fields
url = st.text_input("Website URL:", "https://example.com or .ac.ke " )
user_query = st.text_area("What would you like to know about this website")
if st.button("Submit"):
# Scrape website content
with st.spinner("Scraping website..."):
website = Website(url)
if "Error" in website.title:
st.error("Failed to load the website. Please check the URL.")
else:
st.success("Website loaded successfully!")
st.write(f"**Website Title:** {website.title}")
# Call Groq API for processing
st.write("Querying the website...")
with st.spinner("Processing your query..."):
try:
chat_streaming = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful assistant specializing in extracting and analyzing website content. Answer questions based on the provided website's content. Ensure responses are clear, concise, and formatted in Markdown for better readability."},
{"role": "user", "content": f"{user_query} Here's the content:\n{website.text}"}
],
model="llama3-groq-70b-8192-tool-use-preview",
temperature=0.3,
max_tokens=1200,
top_p=1,
stream=True,
)
response = ""
for chunk in chat_streaming:
response += chunk.choices[0].delta.content
st.write("### Response:")
st.write(response)
except Exception as e:
st.error(f"Failed to process query: {e}")
|