Spaces:
Sleeping
Sleeping
KoRiF
commited on
Commit
·
5fe139f
1
Parent(s):
e2522a1
[refactor] reorder LangGraph method definitions
Browse files- workflow.py +68 -66
workflow.py
CHANGED
@@ -64,72 +64,6 @@ class GAIAAnsweringWorkflow:
|
|
64 |
answer = str(response.content)
|
65 |
return answer
|
66 |
|
67 |
-
@staticmethod
|
68 |
-
def default_qa_function(question: str) -> str:
|
69 |
-
"""Placeholder QA function (override with your CodeAgent)"""
|
70 |
-
return "42"
|
71 |
-
|
72 |
-
@staticmethod
|
73 |
-
def default_formatter(answer: str) -> str:
|
74 |
-
"""Default GAIA formatting"""
|
75 |
-
return answer #f"\\boxed{{{answer}}}"
|
76 |
-
|
77 |
-
def check_context_independent(self, state: AgentState)->bool:
|
78 |
-
if ctx := state.get("context"):
|
79 |
-
if ctx.get("filename"):
|
80 |
-
return False
|
81 |
-
prompt = f"""
|
82 |
-
|
83 |
-
I have a CodeAgent based on the text-to-text model that can use Internet search and parse the information found.
|
84 |
-
If this approach is enough to successfully cope with the task, then we will call such a task an "easy question"
|
85 |
-
|
86 |
-
AS AN ERUDITE PERSON YOU must analyze how difficult it will be to solve the next question
|
87 |
-
<<{state["question"]}>>
|
88 |
-
|
89 |
-
If you think that the question is easy, then return an empty string. Important! You should NOT add any symbols to the output in this case!
|
90 |
-
If the question concerns the use of additional resources such as complex analysis of downloaded files or resources on the Internet, then return an action plan
|
91 |
-
|
92 |
-
"""
|
93 |
-
reply = self.ask_llm(prompt, True)
|
94 |
-
prompt = f""" The reasonings from other LLM is provided: <<{reply}>>
|
95 |
-
You have to Summarize:
|
96 |
-
output either empty string ('') for easy question
|
97 |
-
or extract action plan for non-easy question
|
98 |
-
"""
|
99 |
-
reply = self.ask_llm(prompt, False)
|
100 |
-
if reply:
|
101 |
-
state["reasoning"].append(reply)
|
102 |
-
return False
|
103 |
-
return True
|
104 |
-
|
105 |
-
|
106 |
-
def build_workflow(self) -> Any:
|
107 |
-
"""Construct and compile the LangGraph workflow"""
|
108 |
-
# Create graph
|
109 |
-
workflow = StateGraph(AgentState)
|
110 |
-
|
111 |
-
# Add nodes
|
112 |
-
workflow.add_node("preparations", self.preparations_node)
|
113 |
-
workflow.add_node("triage", self.triage_node)
|
114 |
-
workflow.add_node("deep_processing", self.deep_processing_node)
|
115 |
-
workflow.add_node("generate_answer", self.generate_answer_node)
|
116 |
-
workflow.add_node("format_output", self.format_output_node)
|
117 |
-
|
118 |
-
# Define edges
|
119 |
-
workflow.set_entry_point("preparations")
|
120 |
-
workflow.add_edge("preparations", "triage")
|
121 |
-
workflow.add_conditional_edges("triage"
|
122 |
-
, self.check_context_independent
|
123 |
-
, {
|
124 |
-
True: "generate_answer",
|
125 |
-
False: "deep_processing"
|
126 |
-
})
|
127 |
-
workflow.add_edge("deep_processing", "format_output")
|
128 |
-
|
129 |
-
workflow.add_edge("generate_answer", "format_output")
|
130 |
-
workflow.add_edge("format_output", END)
|
131 |
-
|
132 |
-
return workflow.compile()
|
133 |
|
134 |
def extract_noted_urls_with_llm(self, question: str) -> List[str]:
|
135 |
"""Use LLM to extract URLs specifically noted in the question"""
|
@@ -177,6 +111,35 @@ class GAIAAnsweringWorkflow:
|
|
177 |
print(f"File download failed: {str(e)}")
|
178 |
return ""
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
def preparations_node(self, state: AgentState) -> dict:
|
181 |
if not state["context"]:
|
182 |
return {}
|
@@ -260,6 +223,35 @@ Do NOT include << >> in your answer! Don't use full answer formulations! If you
|
|
260 |
except Exception as e:
|
261 |
return {"formatted_answer": f"\\boxed{{\\text{{Formatting error: {str(e)}}}}}"}
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
def __call__(self, question: str, context: Dict|None=None) -> str:
|
265 |
"""
|
@@ -286,6 +278,16 @@ Do NOT include << >> in your answer! Don't use full answer formulations! If you
|
|
286 |
result = self.workflow.invoke(initial_state)
|
287 |
return result["formatted_answer"]
|
288 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
# Example usage with custom QA function
|
290 |
if __name__ == "__main__":
|
291 |
# Custom QA function (replace with your CodeAgent integration)
|
|
|
64 |
answer = str(response.content)
|
65 |
return answer
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def extract_noted_urls_with_llm(self, question: str) -> List[str]:
|
69 |
"""Use LLM to extract URLs specifically noted in the question"""
|
|
|
111 |
print(f"File download failed: {str(e)}")
|
112 |
return ""
|
113 |
|
114 |
+
|
115 |
+
def check_context_independent(self, state: AgentState)->bool:
|
116 |
+
if ctx := state.get("context"):
|
117 |
+
if ctx.get("filename"):
|
118 |
+
return False
|
119 |
+
prompt = f"""
|
120 |
+
|
121 |
+
I have a CodeAgent based on the text-to-text model that can use Internet search and parse the information found.
|
122 |
+
If this approach is enough to successfully cope with the task, then we will call such a task an "easy question"
|
123 |
+
|
124 |
+
AS AN ERUDITE PERSON YOU must analyze how difficult it will be to solve the next question
|
125 |
+
<<{state["question"]}>>
|
126 |
+
|
127 |
+
If you think that the question is easy, then return an empty string. Important! You should NOT add any symbols to the output in this case!
|
128 |
+
If the question concerns the use of additional resources such as complex analysis of downloaded files or resources on the Internet, then return an action plan
|
129 |
+
|
130 |
+
"""
|
131 |
+
reply = self.ask_llm(prompt, True)
|
132 |
+
prompt = f""" The reasonings from other LLM is provided: <<{reply}>>
|
133 |
+
You have to Summarize:
|
134 |
+
output either empty string ('') for easy question
|
135 |
+
or extract action plan for non-easy question
|
136 |
+
"""
|
137 |
+
reply = self.ask_llm(prompt, False)
|
138 |
+
if reply:
|
139 |
+
state["reasoning"].append(reply)
|
140 |
+
return False
|
141 |
+
return True
|
142 |
+
|
143 |
def preparations_node(self, state: AgentState) -> dict:
|
144 |
if not state["context"]:
|
145 |
return {}
|
|
|
223 |
except Exception as e:
|
224 |
return {"formatted_answer": f"\\boxed{{\\text{{Formatting error: {str(e)}}}}}"}
|
225 |
|
226 |
+
def build_workflow(self) -> Any:
|
227 |
+
"""Construct and compile the LangGraph workflow"""
|
228 |
+
# Create graph
|
229 |
+
workflow = StateGraph(AgentState)
|
230 |
+
|
231 |
+
# Add nodes
|
232 |
+
workflow.add_node("preparations", self.preparations_node)
|
233 |
+
workflow.add_node("triage", self.triage_node)
|
234 |
+
workflow.add_node("deep_processing", self.deep_processing_node)
|
235 |
+
workflow.add_node("generate_answer", self.generate_answer_node)
|
236 |
+
workflow.add_node("format_output", self.format_output_node)
|
237 |
+
|
238 |
+
# Define edges
|
239 |
+
workflow.set_entry_point("preparations")
|
240 |
+
workflow.add_edge("preparations", "triage")
|
241 |
+
workflow.add_conditional_edges("triage"
|
242 |
+
, self.check_context_independent
|
243 |
+
, {
|
244 |
+
True: "generate_answer",
|
245 |
+
False: "deep_processing"
|
246 |
+
})
|
247 |
+
workflow.add_edge("deep_processing", "format_output")
|
248 |
+
|
249 |
+
workflow.add_edge("generate_answer", "format_output")
|
250 |
+
workflow.add_edge("format_output", END)
|
251 |
+
|
252 |
+
return workflow.compile()
|
253 |
+
|
254 |
+
|
255 |
|
256 |
def __call__(self, question: str, context: Dict|None=None) -> str:
|
257 |
"""
|
|
|
278 |
result = self.workflow.invoke(initial_state)
|
279 |
return result["formatted_answer"]
|
280 |
|
281 |
+
@staticmethod
|
282 |
+
def default_qa_function(question: str) -> str:
|
283 |
+
"""Placeholder QA function (override with your CodeAgent)"""
|
284 |
+
return "42"
|
285 |
+
|
286 |
+
@staticmethod
|
287 |
+
def default_formatter(answer: str) -> str:
|
288 |
+
"""Default GAIA formatting"""
|
289 |
+
return answer #f"\\boxed{{{answer}}}"
|
290 |
+
|
291 |
# Example usage with custom QA function
|
292 |
if __name__ == "__main__":
|
293 |
# Custom QA function (replace with your CodeAgent integration)
|