import gradio as gr from huggingface_hub import snapshot_download from pathlib import Path from mistral.cli.chat import load_model, generate_stream # Download the model mistral_models_path = Path.home().joinpath('mistral_models', 'mamba-codestral-7B-v0.1') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/mamba-codestral-7B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path) # Load the model model = load_model(str(mistral_models_path)) def generate_response(message, history): history_mistral_format = [ {"role": "user" if i % 2 == 0 else "assistant", "content": m} for i, m in enumerate(sum(history, [])) ] history_mistral_format.append({"role": "user", "content": message}) response = "" for chunk in generate_stream(model, history_mistral_format, max_tokens=256): response += chunk yield response iface = gr.ChatInterface( generate_response, title="Mamba Codestral Chat", description="Chat with the Mamba Codestral 7B model.", ) if __name__ == "__main__": iface.launch()