Spaces:
Running
Running
File size: 3,383 Bytes
139d7b2 827021c 2e786fb 827021c 2e786fb 827021c 57fc91e 2e786fb 827021c 2e786fb e49c48c 2e786fb 827021c 2e786fb 827021c 2e786fb d288725 827021c d288725 2e786fb d288725 2e786fb d288725 2e786fb d288725 827021c 2e786fb 57fc91e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
import json
from omegaconf import OmegaConf
import sys
import os
from PIL import Image
import torchvision.transforms as transforms
photos_folder = "Photos"
# Pobierz model i config
repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
# Dodaj ścieżkę do modelu
sys.path.append(os.path.dirname(model_path))
from model import Generator
# Załaduj konfigurację
with open(config_path, "r") as f:
config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)
# Inicjalizacja modelu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = Generator(cfg).to(device)
generator.load_state_dict(torch.load(generator_path, map_location=device))
generator.eval()
# Transformacje
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def process_image(image):
# Konwersja do tensora
image_tensor = transform(image).unsqueeze(0).to(device)
# Inferencja
with torch.no_grad():
output_tensor = generator(image_tensor)
# Przygotowanie wyjścia
output_image = output_tensor.squeeze(0).cpu()
output_image = output_image * 0.5 + 0.5 # Denormalizacja
output_image = transforms.ToPILImage()(output_image)
return output_image
def load_images_from_folder(folder):
images = []
for filename in os.listdir(folder):
if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
img_path = os.path.join(folder, filename)
img = Image.open(img_path)
images.append((img, filename))
return images
def load_image_from_gallery(images, index):
if images and 0 <= index < len(images):
image = images[index]
if isinstance(image, tuple):
image = image[0]
return image
return None
def gallery_click_event(images, evt: gr.SelectData):
index = evt.index
selected_img = load_image_from_gallery(images, index)
return selected_img
def clear_image():
return None
def app():
images = load_images_from_folder(photos_folder)
with gr.Blocks(css=".container { background-color: white; }") as demo:
with gr.Row():
with gr.Column():
selected_image = gr.Image(label="Input Image", type="pil")
clear_button = gr.Button("Clear")
with gr.Column():
image_gallery = gr.Gallery(label="Image Gallery", elem_id="gallery", type="pil", value=[img for img, _ in images])
with gr.Column():
result_image = gr.Image(label="Result Image", type="pil")
image_gallery.select(
fn=gallery_click_event,
inputs=image_gallery,
outputs=selected_image
)
selected_image.change(
fn=process_image,
inputs=selected_image,
outputs=result_image
)
clear_button.click(
fn=clear_image,
inputs=None,
outputs=selected_image
)
demo.launch()
if __name__ == "__main__":
app() |