Spaces:
Running
Running
File size: 1,375 Bytes
139d7b2 827021c d288725 827021c d288725 827021c d288725 827021c d288725 827021c d288725 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import torch.nn as nn
from torch import tanh, Tensor
from abc import ABC, abstractmethod
from huggingface_hub import hf_hub_download
import torch
import json
from omegaconf import OmegaConf
import sys
sys.path.append(os.path.dirname(model_path))
from model import Generator
repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
with open(config_path, "r") as f:
config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)
generator = Generator(cfg)
generator.load_state_dict(torch.load(generator_path))
generator.eval()
from PIL import Image
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def process_image(image):
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output_tensor = generator(image_tensor)
output_image = output_tensor.squeeze(0)
output_image = transforms.ToPILImage()(output_image)
return output_image
iface = gr.Interface(fn=process_image, inputs="image", outputs="image", title="Image Generator")
iface.launch()
|