File size: 1,375 Bytes
139d7b2
827021c
 
 
 
 
 
 
 
d288725
 
 
827021c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d288725
 
 
827021c
d288725
 
 
 
 
827021c
d288725
 
 
 
 
 
 
827021c
d288725
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import torch.nn as nn
from torch import tanh, Tensor
from abc import ABC, abstractmethod
from huggingface_hub import hf_hub_download
import torch
import json
from omegaconf import OmegaConf

import sys
sys.path.append(os.path.dirname(model_path))
from model import Generator

repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")


with open(config_path, "r") as f:
    config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)

generator = Generator(cfg)
generator.load_state_dict(torch.load(generator_path))
generator.eval()

from PIL import Image
import torchvision.transforms as transforms


transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

def process_image(image):
    image_tensor = transform(image).unsqueeze(0)
    with torch.no_grad():
        output_tensor = generator(image_tensor)
    output_image = output_tensor.squeeze(0)
    output_image = transforms.ToPILImage()(output_image)
    return output_image

iface = gr.Interface(fn=process_image, inputs="image", outputs="image", title="Image Generator")
iface.launch()