Spaces:
Running
Running
File size: 1,722 Bytes
139d7b2 827021c 2e786fb 827021c 2e786fb 827021c 2e786fb 827021c 2e786fb e49c48c 2e786fb 827021c 2e786fb 827021c 2e786fb d288725 827021c d288725 2e786fb d288725 2e786fb d288725 2e786fb d288725 827021c 2e786fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
import json
from omegaconf import OmegaConf
import sys
import os
from PIL import Image
import torchvision.transforms as transforms
# Pobierz model i config
repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
# Dodaj ścieżkę do modelu
sys.path.append(os.path.dirname(model_path))
from model import Generator
# Załaduj konfigurację
with open(config_path, "r") as f:
config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)
# Inicjalizacja modelu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = Generator(cfg).to(device)
generator.load_state_dict(torch.load(generator_path, map_location=device))
generator.eval()
# Transformacje
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def process_image(image):
# Konwersja do tensora
image_tensor = transform(image).unsqueeze(0).to(device)
# Inferencja
with torch.no_grad():
output_tensor = generator(image_tensor)
# Przygotowanie wyjścia
output_image = output_tensor.squeeze(0).cpu()
output_image = output_image * 0.5 + 0.5 # Denormalizacja
output_image = transforms.ToPILImage()(output_image)
return output_image
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs="image",
title="Satellite to Map Generator"
)
iface.launch() |