import os | |
import matplotlib | |
matplotlib.use('Agg') # Use the 'Agg' backend for non-interactive use | |
import streamlit as st | |
import tkinter as tk | |
from tkinter import scrolledtext | |
import requests | |
SECRET_TOKEN = os.getenv("SECRET_TOKEN") | |
API_URL = "https://api-inference.huggingface.co/models/ahmedrachid/FinancialBERT-Sentiment-Analysis" | |
headers = {"Authorization": f"Bearer {SECRET_TOKEN}"} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
user_query = st.text_area("Enter your text:") | |
if st.button("Analyze Sentiment"): | |
output = query({"inputs": user_query}) | |
st.text("Sentiment Analysis Output:") | |
st.text(output) | |
def get_user_input(): | |
user_query = user_input.get("1.0", tk.END).strip() | |
output_text.delete(1.0, tk.END) # Clear previous output | |
output = query({"inputs": user_query}) | |
output_text.insert(tk.END, output) | |
# import tkinter as tk | |
# from tkinter import scrolledtext | |
# import requests | |
# import os | |
# SECRET_TOKEN = os.getenv("SECRET_TOKEN") | |
# API_URL = "https://api-inference.huggingface.co/models/ahmedrachid/FinancialBERT-Sentiment-Analysis" | |
# headers = {"Authorization": "Bearer {SECRET_TOKEN}"} | |
# def query(payload): | |
# response = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
# # output = query({ | |
# # "inputs": "I like you. I love you", | |
# # }) | |
# def get_user_input(): | |
# user_query = user_input.get("1.0", tk.END).strip() | |
# output_text.delete(1.0, tk.END) # Clear previous output | |
# output = query({"inputs": user_query}) | |
# output_text.insert(tk.END, output) | |
# window = tk.Tk() | |
# window.title("Query Interface") | |
# user_input_label = tk.Label(window, text="Enter your query:") | |
# user_input_label.pack() | |
# user_input = scrolledtext.ScrolledText(window, width=40, height=5, wrap=tk.WORD) | |
# user_input.pack() | |
# query_button = tk.Button(window, text="Query", command=get_user_input) | |
# query_button.pack() | |
# output_text_label = tk.Label(window, text="Output:") | |
# output_text_label.pack() | |
# output_text = scrolledtext.ScrolledText(window, width=40, height=10, wrap=tk.WORD) | |
# output_text.pack() | |
# window.mainloop() | |